
BIG-IP® iRulesLX User Guide

Version 13.0

Table of Contents

iRulesLX programmability...5

Why Node.js?..7

About Node.js development..9

About packages and modules..10

About tmsh and the iRulesLX environment...11

About the iRulesLX development environment..11

Working in the iRulesLX development environment...13

Republishing in the iRulesLX environment..15

About iRulesLX graphical editor...17

Creating a new workspace...17

Deleting a workspace..17

Exporting a workspace..17

Importing a workspace..18

Adding a rule in the workspace editor..18

Adding an extension in the workspace editor..18

Adding a file to an extension in the workspace editor...18

Reverting to a previous version in the workspace editor.......................................19

Viewing plug-in properties..19

Viewing extension properties...19

Creating an iRulesLX plug-in...20

iRulesLX streaming data..21

ILXPlugin class..21

ILXPluginOptions class..23

IXFlow class...23

ILXStream class...25

ILXBufferUtil class..27

ILXDatagroup class..29

ILXLbOptions class..33

ILXTable class..34

ILXTransaction class..40

3

Table of Contents

iRulesLX streaming data native server code example..43

iRulesLX streaming data pass-through HTTP server code example...................................45

iRulesLX streaming data read-write socket code example...47

iRulesLX streaming data server code example...49

Legal Notices..51

Legal notices..51

4

Table of Contents

iRulesLX programmability

What is fundamentally different about iRulesLX? iRulesLX takes advantage of the capabilities of Node.js
to enhance the data plane programmability of a BIG-IP® system. To enhance the programmability aspects
of iRules®, iRulesLX adds a mechanism to invoke programs in Node.js. Node.js is well-suited to a BIG-IP
system, providing a single-threaded environment in which to run programs, taking advantage of asynchronous
behavior, and offering a wide range of packages for download. As a developer, the resources of a vast
community can help you add functionality to your Node.js applications, while reducing the development
effort.

BIG-IP® systems offer an ILX interface that is similar to RPC, as well as a streaming data interface for
Node.js. In the case of the former, the ILX interface lets you call a block of code from a TCL iRule to
perform a programmatic function in Node.js, such as writing to a database. This guide refers to this technology
as ILX RPC. By using the streaming data interface, you can receive and modify traffic in a virtual server.
TCP, SSL, HTTP Compression and Web Acceleration profiles, or a combination of the protocols, are
supported by the ILX profile included with the streaming data interface. This guide refers to this technology
as iRulesLX streaming data. The two interfaces address distinct and different needs but you can develop a
plug-in that uses both interfaces.

Why Node.js?

What benefits will you realize with Node.js as a development platform in the next generation of iRules®?
Themost obvious benefit is that Node.js is written in JavaScript, which is a popular and well-known language
among web application developers. For an application developer, not having to learn a new language is one
less hurdle to clear should you decide to develop for the iRulesLX platform. Node.js also offers a couple
of features that make it suitable for the F5® TMOS® platform.

Node.js runs your code in a single-threaded process. The asynchronous behavior of Node.js improves the
runtime performance of server-side JavaScript. If your code depends on the completion of a task like I/O,
the runtime places the task in a queue and continues processing your code. Keep in mind that a Node.js
process will block in certain circumstances, but Node.js handles I/O requests efficiently. When the I/O task
completes, a callback function runs on the results of the task, providing the second noteworthy feature of
Node.js. Also of note, Node.js also provides access to binary data.

Node.js runs callback functions upon receiving an event notification, such as the completion of the I/O task
mentioned previously that resulted in an event being emitted. In your code, you provide a callback function
as a parameter to a function. Because JavaScript supports first-class functions, you can pass a callback as
a parameter, and the Node.js runtime will run that function on completion of the I/O task.

By using Node.js, you can enhance iRules functionality and incorporate additional features, such as the use
of relational or document databases. While Node.js may not be the best solution in all situations, Node.js
offers reasonably high performance capabilities to JavaScript applications, enabling new functionality in
iRules.

About Node.js development

iRulesLX adds functionality that enables you to make a call to a Node.js process, run JavaScript code in
the Node.js process, and then return the results to ILX RPC. For most extensions that you create, there are
two individual yet related tasks in the development process. The first task is the call that invokes the Node.js
extension.

The TCL sample code specifies a when command and a block of code to run when a specific event occurs.
You can call any supported iRules® event, and this sample shows an HTTP_REQUEST event on a BIG-IP®

system. Within the curly braces, the first line of code uses the iRules command set to create a variable,
which is the handle for the call. In the handle variable, specify the endpoint and the name of the extension
that runs in the Node.js process. The second line of the sample uses the set command to create a variable
that holds the output of the call.

Sample code for any iRules event

when HTTP_REQUEST {
Typical iRule / TCL code
set hndl [ILX::init "/Common/isc" "Ext1"]
set result [ILX::call $hndl func arg]
Process the result

}

The second task to complete for an iRulesLX RPC extension is the Node.js code itself. The first line of the
JavaScript sample assigns the f5-nodejs package to a variable. If you need other packages in your extension,
you should use the require method to load them. The second line of the sample uses the f5 variable to
instantiate an instance of an ILXServer. The constructor method creates an ILX server object to listen on
a port for an event. In this case, ilx.listen listens for an event that is generated when a rule invokes
ILX::call. The callback function takes the request object and tries to locate a function that matches the
function named in the argument string. If a match is found, the callback runs the function and returns the
results to the caller.

/* Load npm or other custom package */

/* Load the f5-nodejs package */
var f5 = require('f5-nodejs');
var ilx = f5.ILXServer();

/* Listen for calls from iRules */

ilx.addMethod('<function name>', function(req, res)
{

/* ... typical JavaScript code ... */
/* Reply with results */
res.reply(ret); });

ilx.listen();

In the event block in the JavaScript code, you can write code to parse the contents of a packet, connect to
other services or databases, or cache data. The res.reply statement in the JavaScript code returns the
results to the result variable in the TCL code block.

About packages and modules

Third-party packages and libraries extend the functionality of Node.js. The node package manager (npm)
site lists thousands of packages that you can install and use in Node.js extensions. Common packages that
you may want to use in iRules® include parsers for JSON and XML, libraries to consume other services
and databases, and distributed memory object caching systems like memcached. In addition to frameworks
designed to simplify Node.js application development, packages are available for, among others:

• JSON parsers
• XML parsers
• Memcached
• Redis
• MongoDB
• MySQL

Note:

The version of Node.js in the BIG-IP® system offers full Node.js compatibility and supports the same
packages as the version of Node.js that you download from the web site.

10

About Node.js development

About tmsh and the iRulesLX environment

The iRulesLX development environment consists of workspaces, extensions, and rules. To simplify the
task of creating workspaces and other directories, iRulesLX includes a set of tmsh commands to accomplish
many of the tasks related to the creation and maintenance of a development environment. If you want to
create a simple workspace with a single extension and a single rule, and then publish the rule and attach it
to a virtual server, iRulesLX supports that task through a concise set of tmsh commands.

iRulesLX follows the Node.js model to take advantage of the common tools that support Node.js. When
you edit a workspace extension directory as part of a development environment, the tmsh command creates
a package.json file in the extension directory. The package.json file contains the meta data for a
Node.js application, and the file also makes the application a valid node package manager (npm) module.
The package manager for Node.js (npm) can use package.json to install the application on other BIG-IP®

systems.

iRulesLX makes use of staging directories for iRules®. Because of this difference, if you edit and then
publish an existing rule, you must follow a different procedure for iRulesLX. In this case, you edit the rule
in the workspace, not in a production environment.

Tip: Setting up an environment applies to both ILX RPC and iRulesLX streaming data.

About the iRulesLX development environment

The development environment for iRulesLX exists in a conventional directory structure
(/var/ilx/workspaces).Within the directory structure, individual workspaces are identified by a partition,
such as ltm, as well as a workspace name. For example, a particular workspace may exist in the following
path: /var/ilx/workspaces/partition/workspace name. The complete directory structure for
iRulesLX includes the following directories:

• /var/ilx/workspaces/partition/workspace name

• /var/ilx/workspaces/partition/workspace name/extensions
• /var/ilx/workspaces/partition/workspace name/rules

You can use ssh to open a shell in the workspace, or use tmsh commands to publish a rule and its associated
extensions and packages. The rule and its associated extensions and packages are referred to collectively
as a plug-in. When a plug-in is created from a workspace, the BIG-IP® system copies the workspace files
to a system location. The plug-in runs from that system location.

Working in the iRulesLX development environment

As an iRules® developer, you must create a development environment before you can edit and publish a
rule using iRulesLX. Complete these steps to create a workspace, publish a rule from the workspace, and
attach the rule to a virtual server.

1. From a tmsh command prompt, run the following command to create a workspace.

create ilx workspace w

2. Using the same tmsh command prompt, run the following command to create a rule in the workspace
for ILX RPC. The Tcl iRule is not needed for the streaming API.

edit ilx workspace w rule r

3. To edit an extension in the workspace, run the following tmsh command .

edit ilx workspace w extension e

4. To edit a file in the extension directory, run the following tmsh command.

edit ilx workspace w extension e file f

5. To create a plug-in from the developer workspace, run the following tmsh command.

create ilx plugin p from-workspace w

6. To attach the rule to a virtual server, run the following tmsh command.

modify virtual v rule w/r

You have now created a development environment, a plug-in, and attached the rule to a virtual server.

Republishing in the iRulesLX environment

As an iRules® developer, you must edit a rule in the development environment before you can republish a
rule using iRulesLX. Complete the following steps to republish a rule from a workspace.

1. Using a tmsh command prompt, run the following command to edit an existing rule in the workspace.

edit ilx workspace w rule r

2. To edit a file in the extension directory, run the following tmsh command.

edit ilx workspace w extension e file f

You may use this particular command as often as necessary to edit files in the extension directory.

3. To republish the modified plug-in, run the following command.

modify ilx plugin p from-workspace w

You have now modified and republished the plug-in.

About iRulesLX graphical editor

iRulesLX provides tools to edit Node.js extensions andmanage plug-ins. Management tasks include creating,
importing, and exporting workspaces, as well as enabling and disabling plug-ins, or modifying the properties
of a plug-in. Editing features include the ability to open a file by double-clicking a file in the workspace,
line numbering, syntax highlighting, andmatching of parentheses and braces within a file. Using the graphical
editor, you can produce a plug-in from a workspace and enable or disable a plug-in to run on a BIG-IP®

system.

Tip: Using the graphical editor applies to both ILX RPC and iRulesLX streaming data.

Creating a new workspace

Manage an iRulesLX workspace by using the Traffic Management User Interface (TMUI) to access a
BIG-IP® system.

1. Log in to the BIG-IP system with your user name and password.
2. On the Main tab, click iRules.

3. Click LXWorkspaces to display the list of existing iRulesLX workspaces.
You must provision ILX (System\Resource Provisioning) in order to view the ILX menu items.

4. Click the Create button.

5. When prompted, type a name for the new workspace.

Deleting a workspace

You can reduce clutter by deleting workspaces that you no longer need or use.

1. On the Main tab, click iRules.
2. Click LXWorkspaces to display the existing workspaces.

3. Select a workspace to delete.
4. Click the Delete button.

When you delete a workspace, you delete the contents of the workspace, as well as the workspace.

Exporting a workspace

To save time and work, you can export a workspace to another BIG-IP® system.

1. On the Main tab, click iRules.
2. Click LXWorkspaces to display the existing workspaces.

3. Select a workspace to export.

4. Click the Export button.
You can also use the export functionality to archive a workspace.

Importing a workspace

To leverage existing iRules®, you can import a workspace from another BIG-IP® system.

1. On the Main tab, click iRules.
2. Click LXWorkspaces to display the existing workspaces.

3. Click the Import button.
4. Select a workspace to import.

When you import a workspace, you must choose the source of the workspace, such as the name of an
archive file, a URI that identifies an archive, a workspace, or a plug-in.

Adding a rule in the workspace editor

For individual workspaces, you can use the workspace editor to create a new rule or make changes to an
existing rule.

1. Click Add iRule to add a rule.
The workspace editor screen appears when you create or import a workspace, or when you open a
workspace to make modifications.

2. To delete any rule, extension, or extension file, select the item and click the Delete button.

Adding an extension in the workspace editor

For individual workspaces, you can use the workspace editor to create a new extension or make changes to
an existing extension.

1. Click the Add Extension button to add an extension to a workspace.
In this context, an extension consists of scripts, files, or Node.js modules.

2. To delete any rule, extension, or extension file, select the item and click the Delete button.

Adding a file to an extension in the workspace editor

When you are working with an extension in the workspace, you can use the workspace editor to add a file
to an existing extension.

1. Click the Add Extension File button to add a file to an extension.
You must select an extension to enable the button.

2. To delete any rule, extension, or extension file, select the item and click the Delete button.

18

About iRulesLX graphical editor

Reverting to a previous version in the workspace editor

As a convenience, you can revert any unsaved changes to a file and restore the previous version.

1. Click the Revert File button.
If you make a number of changes and then decide not to continue, you can restore the previous version
of a file that is open in the editing panel. To undo an individual change to a file, use the Ctrl+Z key
combination.

2. To save the changes, rather than revert to the previous saved copy of a file, click the Save File button.
When you save the changes, you are saving the changes to the file open in the editing pane.

Viewing plug-in properties

You can click on a plug-in to view its properties using the LX Plugins screen settings.

1. To reload a plug-in from a workspace, click Reload from Workspace.
You can select a workspace other than the workspace used to originally create the plug-in. The list of
available workspaces appears in the drop down list. When you choose to reload the workspace, you
incorporate workspace changes into the plug-in. Reloading a workspace integrates any changes you
made to a workspace that are not yet part of a plug-in. By creating multiple workspaces, you can
implement multiple versions of a plug-in.

2. To view the extensions properties, click on one of the extensions listed in Extensions.

Viewing extension properties

You can access any of the available property settings for an extension and make a change, such as entering
a value or selecting a value from a drop-down list.

1. To specify a concurrency mode for the extension, select a value from the drop-down list.
The Dedicated setting specifies a separate Node.js process for each provisioned Traffic Management
Microkernel (TMM). Single specifies a single Node.js process for all TMM processes.

2. To specify the maximum number of restarts for an extension, type a value in theMaximum Restarts
field.
Specifies the maximum failures for an extension process before the system abandons efforts to restart
the process. The default value is 5.

3. To specify a time interval for maximum restarts, type a value in the Restart Interval field.
Specifies the time, in seconds, that the maximum number of restarts (Maximum Restarts) can occur.
The default value is 60 seconds.

4. To enable debugging, check the EnableDebug setting.
Enable or disable debug mode for the extension. You must restart the plugin for the setting to take effect.

5. To specify a range of port numbers, type a value for the Debug Port Range Low and Debug Port
Range High fields.

19

BIG-IP® iRulesLX User Guide

After you enable debugging, the iRulesLX process searches for an available port to attach the node
inspector. The low value represents the low end of the port range that iRulesLX will try, and the high
value represents the high end of the port range. iRulesLX starts with the low end port number and
increments the value until it locates an available port or reaches the high end port.

Creating an iRulesLX plug-in

After you save the workspace files, create a plug-in from the workspace by navigating to the LX Plugins
screen and following the steps to create a plug-in.

1. On the Main tab, select LX Plugins, and click the Create button.
2. For the new plug-in, type a name for the plug-in and select the corresponding workspace for the plug-in

from the drop-down list. You can provide a description for the plug-in you are creating, although the
description is optional.

3. Click Finished to create the plug-in.
Click Repeat to create the plug-in if you want to create a similar plug-in with a different name. The
repeat feature uses the same settings.

Once you have created a plug-in, you can begin using it by attaching the corresponding rule to a virtual
server.

20

About iRulesLX graphical editor

iRulesLX streaming data

While IPX RPC addresses a need for utility applications, such as writing data to a database, iRulesLX
focuses on receipt and modification of network traffic, including protocols not currently supported by a
BIG-IP system. This functionality represents the primary purpose of iRulesLX streaming data. The ILX
profile included with iRulesLX works with any combination of TCP, SSL, HTTP compression and Web
Acceleration profiles available on a BIG-IP system. By using the iRulesLX streaming data API, you can
create a plug-in to manage unsupported protocols or add custom behavior to supported protocols. To make
iRulesLX plug-in programming as simple and powerful as possible, the API consists of methods that you
can call from aNode.js application. An iRulesLX plug-in can contain Node.js code that you write, contributed
modules and libraries, or both.

The iRulesLX streaming data API includes methods to perform the operations to receive and modify data
and to manage the flow of data between a client and a server. iRulesLX streaming provides notification of
events, such as client connections to a virtual server, server connections, disconnections, access to data
groups, access to the session DB, as well as enhancements to the Node.js buffer methods. To assist with
troubleshooting and performance, iRulesLX streaming data API includes methods for debugging and tracing
a plug-in.

To maintain consistency, the workspace setup and configuration of iRulesLX streaming is similar to the
setup and configuration for ILX RPC. The iRulesLX (ILX) streaming data flows and ILX RPC share
workspace and plug-in configuration to simplify setup and deployment activities. Likewise, starting a
plug-in, stopping a plug-in, and restarting a plug-in after you modify it are consistent for all plug-ins. ILX
streaming does not require a Tcl iRule to be associated with a virtual server.

The iRulesLX streaming data objects and methods are described in the following topics.

ILXPlugin class

The ILXPlugin class provides configuration for the plug-in interface and responds to new client connections
to a virtual server.

ILXPlugin.start

ILXPlugin.start initializes communication with the TMM. For more information, see the ILXPluginOptions
reference.

ILXPlugin.start (ILXPluginOptions)

ILXPlugin.on

ILXPlugin.on emits the initialized event when the plug-in successfully connects to the TMM. A virtual
server with an ILX profile that refers to the plug-in is necessary for the event to occur. The event signals
that the plug-in may issue ILXDatagroup, ILXTable, and ILXStream.connect commands.

ILXPlugin.on ('initialized', function () {...})

ILXPlugin.on emits the uninitialized event when the plug-in is no longer connected to the TMM. In
contrast to the initialized event, the association between a virtual server with an ILX profile and a

plug-in no longer exists when the event occurs. The event signals the plug-in that it cannot issue
ILXDatagroup, ILXTable, and ILXStream.connect commands.

ILXPlugin.on ('uninitialized', function () {...})

ILXPlugin.on listens for a connection request and invokes the callback function when the event occurs. The
flow parameter shown in the example is an ILXFlow object that contains the ILXFlow.client and
ILXFlow.server socket streams.

ILXPlugin.on ('connect', function (flow) { ... })

You can use ILXPlugin.on as shown:

var f5 = require("f5-nodejs");
var plugin = new f5.ILXPlugin();
plugin.on("connect", function(flow)) {
...
}

ILXPlugin.setGlobalTraceLevel

ILXPlugin.setGlobalTraceLevel enables or disables debug and tracing output for the application plug-in,
including flows and streams.

ILXPlugin.setGlobalTraceLevel (integer)

ILXPlugin.globalTraceLevel

ILXPlugin.globalTraceLevel returns the current global trace level.

ILXPlugin.globalTraceLevel()

ILXPlugin.setTraceLevel

ILXPlugin.setTraceLevel enables or disables debug and tracing for the ILXPlugin object.

ILXPlugin.setTraceLevel (integer)

ILXPlugin.traceLevel

ILXPlugin.traceLevel returns the current trace level.

ILXPlugin.traceLevel()

ILXPlugin.getDataGroup

ILXPlugin.getDataGroup returns an ILXDatagroup object, which defines a set of operations that delegate
work to the C++ implementation.

ILXPlugin.getDataGroup (dg_name)

22

iRulesLX streaming data

ILXPluginOptions class

The ILXPluginOptions class defines actions taken on parameters passed to ILXPlugin.start.

ILXPluginOptions.handleClientOpen

If true, ILXPluginOptions.handleClientOpen requests that the plug-in perform validation before permitting
the connection request to proceed, or terminating the client connection and flow.

ILXPluginOptions.handleClientOpen (Boolean)

ILXPluginOptions.handleClientData

If true, indicates that the plug-in expects to receive payload data from the client stream ILXFlow.client.

ILXPluginOptions.handleClientData (Boolean)

ILXPluginOptions.handleServerData

If true, indicates that the plug-in expects to receive payload data from the server stream ILXFlow.server.

ILXPluginOptions.handleServerData (Boolean)

ILXPluginOptions.disableServer

Indicates that the ILXFlow.server socket is disabled. The default value is false. You may use this if a
plug-in only interacts with the client, or the plug-in is invoked with ILXPlugin.startHttpServer. Note that
calling ILXPlugin.startHttpServer to invoke a plug-in automatically enables the setting.

ILXPluginOptions.disableServer(Boolean)

IXFlow class

The ILXFlow class manages operations like closing a stream, detaching from the TMM, or making a load
balancing choice.

ILXFlow.lbSelect

ILXlbOptions specifies the load balancing options to invoke. Data may not be sent to the server prior to
calling ILXFlow.lbSelect, and you must enable ILXPluginOptions.handleClientOpen.

ILXFlow.lbSelect (ILXlbOptions)

23

BIG-IP® iRulesLX User Guide

ILXFlow.end

Results in a graceful shutdown of client and server streams.

ILXFLow.end()

ILXFlow.destroy

Results in an immediate shutdown of client and server streams.

ILXFlow.destroy()

ILXFlow.detach
Detaches the plug-in from the Traffic Management Microkernel (TMM). The client-server connection
remains active in TMM, but data and events are not passed to the plug-in.

ILXFLow.detach()

ILXFlow.client

Specifies the client ILXStream socket object.

ILXFlow.server

Specifies the server ILXStream socket object.

ILXFlow.virtual

Specifies the virtual server associated with the client side flow. The object contains the following properties:

• ILXFLow.virtual.name
• ILXFlow.virtual.address
• ILXFlow.virtual.port
• ILXFlow.virtual.routeDomain

ILXFlow.lb

Specifies the information about the load balancing selection made by, or for, the flow.

• ILXFlow.lb.virtualServer, which is undefined unless the connection was load balanced to a virtual server.
• ILXFlow.lb.pool, which is undefined if ILXFlow.lb.virtualServer is defined.
• ILXFlow.lb.remote, consisting of the remote server address, ILXFLow.lb.remote.address,

ILXFLow.lb.remote.port, or ILXFlow.lb.remote.routeDomain.
• ILXFlow.lb.vlan, which is a numeric VLAN ID. In the case of a virtual server targeting a virtual server,

the value will be zero.
• ILXFLow.lb.nexthop, which is undefined if the nexthop is all zeroes.

If SNAT is enabled, the following fields will be populated:

• ILXFLow.lb.snatpool
• ILXFlow.lb.local.address
• ILXFlow.lb.local.port
• ILXFlow.lb.local.routeDomain

24

iRulesLX streaming data

ILXFLow.on

The event is emitted when a flow level error occurs. The flow becomes unusable.

ILXFlow.on('error', function() {...})

The event is emitted when both client and server streams have closed.

ILXFLow.on('close', function() {...})

ILXFlow.setTraceLevel

Enables or disables debug tracing of an ILXFLow object.

ILXFLow.setTraceLevel(integer)

ILXFlow.traceLevel

Determines the current trace level.

ILXFLow.traceLevel()

ILXFlow.tmmId

Determines the identifier of the TMM that is supporting the flow, as a positive integer.

ILXFlow.tmmId()

ILXStream class

The ILXStream class implements the Node.js stream and socket interfaces stream.readable, stream.Writeable,
stream.Duplex, and net.Socket.

A client stream and a server stream are created for each ILXFlow object instance. ILXStream also defines
a method that a plug-in uses to initiate outbound connections that go directly to the TMM by using the V1
plug-in interface.

ILXStream.allow

The ILXStream.allow method allows a client connection to proceed to a server. You must call this method
from an ILXFlow.client stream. ILXPluginOptions.handleClientOpen must be enabled and no data
may have been sent to the server prior to calling ILXStream.allow.

ILXStream.allow()

25

BIG-IP® iRulesLX User Guide

ILXStream.on

The ILXStream.on method emits the connect event when an ILXFlow.server stream connects to a server.
The event is emitted only for the ILXFLow.server object.

ILXStream.on('connect', function () {...})

The ILXStream.on method emits the requestStart event after the TMM receives HTTP request headers.
An HTTP profile must be associated with the virtual server.

ILXStream.on('requestStart', function (uri, method, path, query, version,
hdrs) {...})

The ILXStream.on method emits the requestComplete event after the TMM receives a complete HTTP
request transaction from the client. An HTTP profile must be associated with the virtual server.

ILXStream.on('requestComplete', function () {...})

The ILXStream.on method emits the responseStart event after the TMM receives HTTP response
headers. An HTTP profile must be associated with the virtual server.

ILXStream.on('responseStart', function (hdrs, status, version) {...})

The ILXStream.on method emits the responseComplete event after the TMM receives a complete HTTP
response transaction from the server. An HTTP profile must be associated with the virtual server.

ILXStream.on('responseComplete', function () {...})

ILXStream.setTraceLevel

Specifies the level of debug/tracing of an ILXStream object.

ILXStream.setTraceLevel(integer)

ILXStream.traceLevel

Retrieves the current trace level setting.

ILXStream.traceLevel()

ILXStream.tmmId

Determines the identifier of the TMM that is supporting the stream, as a positive integer.

ILXStream.tmmId()

ILXStream.connect

Specifies the options for a connection.

26

iRulesLX streaming data

DescriptionProperty

Specifies an IP address. The address may contain a
route domain qualifier, such as 10.10.0.1%5 to
specify an address in route domain 5.

options.host

Specifies an IP port.options.port

Specifies a virtual server. A connection will use the
server-side stack of the virtual server. This setting

options.virtualServer

may not be used in conjunction with the host and
port (host:port) options.

Specifies the server-side profile of a specific virtual
server whenmaking a connection. The virtual server

options.virtualProtocolStack

must be associated with the current plug-in by an
ILX profile. Note that a virtualProtocolStack
is independent of the virtualServer option. A
connection cannot be established if the plug-in is not
associated with any virtual server specified in an ILX
profile. If you do not specify a virtual server, a virtual
server is chosen.

If an SSL profile is present on the server side of the
virtual server, use this option to disable SSL for a
plug-in initiated connection.

options.disableSsl

ILXStream.connect(options)

ILXBufferUtil class

The ILXBufferUtil class defines methods that manipulate inbound and outbound plug-in data.

ILXBufferUtil.append

The ILXBufferUtil.append method appends bytes, either as a string or a buffer of data, to a specified
buffer.

ILXBufferUtil.append(buffer, bytes)

ILXBufferUtil.erase
The ILXBufferUtil.erase method removes bytes from a specified buffer, starting at an offset, and
removing len bytes from the buffer.

ILXBufferUtil.erase(buffer, offset, len)

ILXBufferUtil.insert

The ILXBufferUtil.insert method inserts the specified bytes into a buffer, starting at an offset.

ILXBufferUtil.insert(buffer, bytes, offset)

27

BIG-IP® iRulesLX User Guide

ILXBufferUtil.replace

The ILXBufferUtil.replace method replaces the first instance of a string in a buffer. The string to replace
is specified by old, and the replacement string is specified by repl. The result object holds the output
of the method and the indices of the words replaced by the method. If no matches were found, the array
remains empty and the original buffer is returned.

DescriptionProperty

Specifies the starting location in the buffer. Assumes
the index to the buffer starts at zero.

options.offset

Indicates whether to ignore case when searching;
false, by default.

options.icase

Indicates whether to replace all occurrences of the
string, or just the first occurrence; false, by default.

options.all

ILXBufferUtil.replace(buffer, old, repl, result, options)

ILXBufferUtil.replaceAt

The ILXBufferUtil.replaceAt method creates a new buffer that contains one or more replaced tokens. The
bytes starting with offset, up to the specified length len are replaced with the bytes specified by repl.

DescriptionProperty

Specifies the number of bytes to replace. Default
length is the end of the buffer.

options.length

ILXBufferUtil.replaceAt(buffer, repl, offset, len)

ILXBufferUtil.search

The ILXBufferUtil.search method finds the index of the specified bytes in a buffer. If the bytes are not
found in the string, the index is set to -1.

ILXBufferUtil.search(buffer, bytes, options)

ILXBufferUtil.rsearch

The ILXBufferUtil.rsearch method finds the index of the specified bytes in a buffer from the end of the
string.

DescriptionProperty

Specifies the starting location in the buffer. Assumes
the index to the buffer starts at zero.

options.offset

Indicates whether to ignore case when searching;
false, by default.

options.icase

28

iRulesLX streaming data

ILXDatagroup class

The ILXDatagroup class provides an API data group access, similar in functionality to an iRules® data
group.

ILXDatagroup.getSize

The ILXDatagroup.getSize method retrieves the number of elements in a data group.

ILXDatagroup.getSize()

ILXDatagroup.getType

The ILXDatagroup.getType method retrieves the type of the data group. Possible return values are:

• Type.IP = 1
• Type.STRING = 2
• Type.INTEGER = 3

ILXDatagroup.getType()

ILXDatagroup.matchEquals

The ILXDatagroup.matchEquals method searches a data group with a key and retrieves values based on
the return type. The parameter name specifies the name of the record as a key to match in the data group,
and is dependent on the type of the data group (string, number, or IP). An IP address argument can be IPv4
or IPv6 values, such as 10.0.0.0/24, 2001:db8::1/64, or ::/32.

DescriptionProperty

Specifies that only the found name is retrieved.options.return

Specifies that all found matches are retrieved.options.all

Indicates a non case-sensitive search, if true. Defaults
to false.

options.icase

The options.return property accepts the following values:

DescriptionProperty

Specifies that just the name is included in the results.ILXDatagroup.Options.NAME

Specifies that the value corresponding to the name
is included in the results.

ILXDatagroup.Options.VALUE

Specifies that the object that includes the name and
value is included in the results.

ILXDatagroup.Options.ELEMENT

Indicates that the Boolean value is included in the
results; true if a match is found, otherwise false.

none

29

BIG-IP® iRulesLX User Guide

ILXDatagroup.searchEquals

Refer to the description for ILXDatagroup.matchEquals.

ILXDatagroup.searchEquals(name, options)

ILXDatagroup.searchStartsWith

The ILXDatagroup.searchStartsWith method retrieves records from a data group where the name matches
the prefix and the type matches the options type. Valid only for data groups of type Type.STRING.

DescriptionProperty

Specifies that only the found name is retrieved.options.return

Specifies that all found matches are retrieved.options.all

Indicates that a non case-sensitive search, if true.
Defaults to false.

options.icase

The options.return property accepts the following values:

DescriptionProperty

Specifies that just the name is included in the results.ILXDatagroup.Options.NAME

Specifies that the value corresponding to the name
is included in the results.

ILXDatagroup.Options.VALUE

Specifies that the object that includes the name and
value is included in the results.

ILXDatagroup.Options.ELEMENT

Indicates that the Boolean value is included in the
results; true if a match is found, otherwise false.

none

ILXDatagroup.searchStartsWith(name_prefix, options)

ILXDatagroup.searchEndsWith

The ILXDatagroup.searchEndsWith method retrieves records from a data group where the name matches
the suffix and the type matches the options type. Valid only for data groups of type Type.STRING.

DescriptionProperty

Specifies that only the found name is retrieved.options.return

Specifies that all found matches are retrieved.options.all

Indicates a non case-sensitive search, if true. Defaults
to false.

options.icase

The options.return property accepts the following values:

DescriptionProperty

Specifies that just the name is included in the results.ILXDatagroup.Options.NAME

Specifies that the value corresponding to the name
is included in the results.

ILXDatagroup.Options.VALUE

Specifies that the object that includes the name and
value is included in the results.

ILXDatagroup.Options.ELEMENT

30

iRulesLX streaming data

DescriptionProperty

Indicates that the Boolean value is included in the
results; true if a match is found, otherwise false.

none

ILXDatagroup.searchEndsWith(name_suffix, options)

ILXDatagroup.searchContains

The ILXDatagroup.searchContains method retrieves records from a data group where the name includes
the token and the type matches the options type. The token parameter specifies the name string to match in
a record. Valid only for data groups of type Type.STRING.

DescriptionProperty

Specifies that only the found name is retrieved.options.return

Specifies that all found matches are retrieved.options.all

Indicates a non case-sensitive search, if true. Defaults
to false.

options.icase

The options.return property accepts the following values:

DescriptionProperty

Specifies that just the name is included in the results.ILXDatagroup.Options.NAME

Specifies that the value corresponding to the name
is included in the results.

ILXDatagroup.Options.VALUE

Specifies that the object that includes the name and
value is included in the results.

ILXDatagroup.Options.ELEMENT

Indicates that the Boolean value is included in the
results; true if a match is found, otherwise false.

none

ILXDatagroup.searchContains(token, options)

ILXDatagroup.matchStartsWith

The ILXDatagroup.matchStartsWith method retrieves records that represent prefixes for the name and the
type matches the options type. The name parameter specifies the matching string. Valid only for data groups
of type Type.STRING.

DescriptionProperty

Specifies that only the found name is retrieved.options.return

Specifies that all found matches are retrieved.options.all

Indicates a non case-sensitive search, if true. Defaults
to false.

options.icase

The options.return property accepts the following values:

DescriptionProperty

Specifies that just the name is included in the results.ILXDatagroup.Options.NAME

31

BIG-IP® iRulesLX User Guide

DescriptionProperty

Specifies that the value corresponding to the name
is included in the results.

ILXDatagroup.Options.VALUE

Specifies that the object that includes the name and
value is included in the results.

ILXDatagroup.Options.ELEMENT

Indicates that the Boolean value is included in the
results; true if a match is found, otherwise false.

none

ILXDatagroup.matchStartsWith(name, options)

ILXDatagroup.matchEndsWith

The ILXDatagroup.endsWith method retrieves records that represent suffixes for the name and the type
matches the options type. The line parameter specifies the matching string. Valid only for data groups of
type Type.STRING.

DescriptionProperty

Specifies that only the found name is retrieved.options.return

Specifies that all found matches are retrieved.options.all

Indicates a non case-sensitive search, if true. Defaults
to false.

options.icase

The options.return property accepts the following values:

DescriptionProperty

Specifies that just the name is included in the results.ILXDatagroup.Options.NAME

Specifies that the value corresponding to the name
is included in the results.

ILXDatagroup.Options.VALUE

Specifies that the object that includes the name and
value is included in the results.

ILXDatagroup.Options.ELEMENT

Indicates the Boolean value is included in the results;
true if a match is found, otherwise false.

none

ILXDatagroup.endsWith(line, options)

ILXDatagroup.matchContains

The ILXDatagroup.matchContains method retrieves records contained in the name and the type matches
the options type. The name parameter specifies the matching string. Valid only for data groups of type
Type.STRING.

DescriptionProperty

Specifies that only the found name is retrieved.options.return

Specifies that all found matches are retrieved.options.all

Indicates a non case-sensitive search, if true. Defaults
to false.

options.icase

The options.return property accepts the following values:

32

iRulesLX streaming data

DescriptionProperty

Specifies that just the name is included in the results.ILXDatagroup.Options.NAME

Specifies that the value corresponding to the name
is included in the results.

ILXDatagroup.Options.VALUE

Specifies that the object that includes the name and
value is included in the results.

ILXDatagroup.Options.ELEMENT

Indicates that the Boolean value is included in the
results; true if a match is found, otherwise false.

none

ILXDatagroup.matchContains(name, options)

ILXDatagroup.forEach

The ILXDatagroup.forEach method iterates through the data group and invokes a callback function for
every record. The callback_function parameter defines a callback as an index and an element, where
the index is the index of the current element and the element is the name and value for the record object.
An example of a callback function that iterates the first 10 records in a data group is shown here:

dg.forEach(function(index, element) {
if (index >= 10) {

return true;
}
console.log("name: " + element.name + " value: " + element.value);

});

ILXLbOptions class

The ILXLbOptions class represents the options available to the ILXFlow.lbSelect method.

ILXLbOptions

DescriptionProperty

Specifies the name of the BIG-IP® LTM virtual
server, as a fully-qualified path name.

ILXLbOptions.virtualserver

Specifies the name of the LTM pool name, as a
fully-qualified path name.

ILXLbOptions.poolName

Specifies the IP address to which to connect. The
address may include a route domain, such as
10.1.1.1%22, to specify route domain 22.

ILXLbOptions.remote.address

Specifies the port number to which to connect.ILXLbOptions.remote.port

Specifies the physical interface name.ILXLbOptions.interface

Indicates whether to include virtual servers. Must be
set to true to if an address is specified in
ILXLbOptions.remote.address.

ILXLbOptions.includeVirtualServers

Load balancing uses the following precedence rules:

33

BIG-IP® iRulesLX User Guide

• The system will load balance to the specified virtual server.
• The system will load balance to the specified pool.
• The system will load balance to the specified remote address if no virtual server or pool is specified. If

ILXLbOptions.includeVirtualServers is true, a virtual server may be specified by remote address.

ILXTable class

The ILXTable class defines an asynchronous API to access the TMM session DB.

ILXTable

The ILXTable class defines an asynchronous API to access the TMM session DB. API methods and
parameters mimic the Tcl iRules® table commands. Features of the API include the following:

• The session DB provides storage for key-value pairs that you can share across connections and plug-in
processes.

• The class lets you create and query key-value pairs.
• Upon completion of an operation, a table emits an event. The Node.js event complete includes result

and status.
• You access table operations by using the table property of an ILXStream object. ILXStream.table returns

an ILXTable object.

var myTableRequest = flow.client.table.set("myKey", "value");
myTableRequest.on('set', function (value, status) {...});
```

ILXTable.set

The ILXTable.set method sets a session DB key-value pair, where key, value, and options are parameters
to the method. The options parameter to the method offers the following properties:

DescriptionProperty

If true, an existing key will not be updated, and the
value will be returned. Default value is false.

options.excl

Specifies the number of seconds, or
ILXTable.INDEFINITE. Default value is
ILXTable.INDEFINITE.

options.lifetime

Indicates that a key will be created if it does not exist.
Default value is false. If the value is true and the
key does not exist, no change occurs.

options.mustExist

Indicates that the TMM will not send a reply to the
plug-in and a complete event will not be generated.
Default value is false.

options.noReply

Indicates that the time stamp of the key will not be
updated. Default value is false.

options.noTouch

Specifies the name of the subtable. Default value is
no subtable.

options.subtable

34

iRulesLX streaming data



DescriptionProperty

Specifies the number of seconds, or
ILXTable.INDEFINITE. Default value is 180
seconds.

options.timeout

Specifies the level of debug tracing for an operation.
Default value is 0.

options.traceLevel

The method returns a key value, a system error, or one of the following status values:

• ILXTable.OK
• ILXTable.NOT_FOUND
• ILXTable.EXISTS

ILXTable.set( key, value, options )

ILXTable.add

The ILXTable.addmethod adds a sessionDB key-value pair, where key, value, and options are parameters
to the method. The ILXTable.set method with the excl option set to true produces the same result. The
options parameter to the method offers the following properties:

DescriptionProperty

Specifies the number of seconds, or
ILXTable.INDEFINITE. Default value is
ILXTable.INDEFINITE.

options.lifetime

Indicates that the TMM will not send a reply to the
plug-in and a complete event will not be generated.
Default value is false.

options.noReply

Indicates that the timestamp of the key will not be
updated. Default value is false.

options.noTouch

Specifies the name of the subtable. Default value is
no subtable.

options.subtable

Specifies the number of seconds, or
ILXTable.INDEFINITE. Default value is 180
seconds.

options.timeout

Specifies the level of debug tracing for an operation.
Default value is 0.

options.traceLevel

The method returns a key value, a system error, or one of the following status values:

• ILXTable.OK
• ILXTable.NOT_FOUND

ILXTable.add( key, value, options )

ILXTable.replace

The ILXTable.replace method updates a session DB key-value pair, where key, value, and options are
parameters to the method. The ILXTable.set method with the mustExist option set to true produces the
same result. The options parameter to the method offers the following properties:

35

BIG-IP® iRulesLX User Guide



DescriptionProperty

Specifies the number of seconds, or
ILXTable.INDEFINITE. Default value is
ILXTable.INDEFINITE.

options.lifetime

Indicates that the TMM will not send a reply to the
plug-in and a complete event will not be generated.
Default value is false.

options.noReply

Indicates that the timestamp of the key will not be
updated. Default value is false.

options.noTouch

Specifies the name of the subtable. Default value is
no subtable.

options.subtable

Specifies the number of seconds, or
ILXTable.INDEFINITE. Default value is 180
seconds.

options.timeout

Specifies the level of debug tracing for an operation.
Default value is 0.

options.traceLevel

The method returns a key value, a system error, or one of the following status values:

• ILXTable.OK
• ILXTable.NOT_FOUND

ILXTable.replace( key, value, options )

ILXTable.lookup

The ILXTable.lookupmethod retrieves a session DB key-value pair, where key and options are parameters
to the method.

DescriptionProperty

Indicates that the time stamp of the key will not be
updated. Default value is false.

options.noTouch

Specifies the name of the subtable. Default value is
no subtable.

options.subtable

Specifies the level of debug tracing for an operation.
Default value is 0.

options.traceLevel

The method returns a key value, a system error, or one of the following status values:

• ILXTable.OK
• ILXTable.NOT_FOUND

ILXTable.lookup( key, options )

ILXTable.incr

The ILXTable.incr method increments a value, where key and options are parameters to the method.

DescriptionProperty

Specifies the increment. Default value is 1.options.delta

36

iRulesLX streaming data



DescriptionProperty

Indicates that a key will be created if it does not
exist. Default value is false. If the value is true
and the key does not exist, no change occurs.

options.mustExist

Indicates that the TMM will not send a reply to the
plug-in and a complete event will not be generated.
Default value is false.

options.noReply

Indicates that the time stamp of the key will not be
updated. Default value is false.

options.noTouch

Specifies the name of the subtable. Default value is
no subtable.

options.subtable

Specifies the level of debug tracing for an operation.
Default value is 0.

options.traceLevel

The method returns a key value, a system error, or one of the following status values:

• ILXTable.OK
• ILXTable.NOT_FOUND

ILXTable.incr( key, value, options )

ILXTable.append

The ILXTable.append method appends a string to a session DB value, where key, value, and options
are parameters to the method.

DescriptionProperty

Indicates that a key will be created if it does not exist.
Default value is false. If the value is true and the
key does not exist, no change occurs.

options.mustExist

Indicates that the TMM will not send a reply to the
plug-in and a complete event will not be generated.
Default value is false.

options.noReply

Indicates that the time stamp of the key will not be
updated. Default value is false.

options.noTouch

Specifies the name of the subtable. Default value is
no subtable.

options.subtable

Specifies the level of debug tracing for an operation.
Default value is 0.

options.traceLevel

The method returns a key value, a system error, or one of the following status values:

• ILXTable.OK
• ILXTable.NOT_FOUND

ILXTable.append( key, value, options )

37

BIG-IP® iRulesLX User Guide



ILXTable.delete

The ILXTable.delete method deletes a session DB key and its associated value, where key and options are
parameters to the method.

DescriptionProperty

Indicates that the TMM will not send a reply to the
plug-in and a complete event will not be generated.
Default value is false.

options.noReply

Specifies the name of the subtable. Default value is
no subtable.

options.subtable

Specifies the level of debug tracing for an operation.
Default value is 0.

options.traceLevel

The method returns a system error or one of the following status values:

• ILXTable.OK
• ILXTable.NOT_FOUND

ILXTable.delete( key, options )

ILXTable.deleteAll

The ILXTable.deleteAll method deletes all key-value pairs in a session DB subtable.

DescriptionProperty

Indicates that the TMM will not send a reply to the
plug-in and a complete event will not be generated.
Default value is false.

options.noReply

Specifies the level of debug tracing for an operation.
Default value is 0.

options.traceLevel

The method returns a system error or the following status values:

• ILXTable.OK
• ILXTable.NOT_FOUND

ILXTable.deleteAll( subtable, options )

ILXTable.setTimeout

The ILXTable.setTimeout method sets a timeout value for a session DB key.

DescriptionProperty

Indicates that the TMM will not send a reply to the
plug-in and a complete event will not be generated.
Default value is false.

options.noReply

Specifies the name of the subtable. Default value is
no subtable.

options.subtable

Specifies the level of debug tracing for an operation.
Default value is 0.

options.traceLevel

38

iRulesLX streaming data



The method returns a timeout value, a system error, or one of the following status values:

• ILXTable.OK
• ILXTable.NOT_FOUND

ILXTable.setTimeout( key, value, options )

ILXTable.getTimeout

The ILXTable.getTimeout method retrieves the timeout value for a session DB key.

DescriptionProperty

Indicates that the method return remaining time
instead of timeout value. Defaults to false.

options.remaining

Specifies the name of the subtable. Default value is
no subtable.

options.subtable

Specifies the level of debug tracing for an operation.
Default value is 0.

options.traceLevel

The method returns a timeout or time remaining value, a system error, or the following status values:

• ILXTable.OK
• ILXTable.NOT_FOUND

ILXTable.getTimeout( key, options )

ILXTable.setLifetime

The ILXTable.setLifetime method sets the lifetime of a key, in seconds, or ILXTable.INDEFINITE.

DescriptionProperty

Indicates that the TMM will not send a reply to the
plug-in and a complete event will not be generated.
Default value is false.

options.noReply

Specifies the name of the subtable. Default value is
no subtable.

options.subtable

Specifies the level of debug tracing for an operation.
Default value is 0.

options.traceLevel

The method returns a lifetime value, a system error, or one of the following status values:

• ILXTable.OK
• ILXTable.NOT_FOUND

ILXTable.setLifetime( key, value, options )

ILXTable.getLifetime

The ILXTable.getLifetime method returns the lifetime value for a session DB key.

39

BIG-IP® iRulesLX User Guide



DescriptionProperty

Indicates that the method return remaining time
instead of timeout value. Defaults to false.

options.remaining

Specifies the name of the subtable. Default value is
no subtable.

options.subtable

Specifies the level of debug tracing for an operation.
Default value is 0.

options.traceLevel

The method returns a lifetime or lifetime remaining value, a system error, or one of the following status
values:

• ILXTable.OK
• ILXTable.NOT_FOUND

ILXTable.getLifetime( key, options )

ILXTable.keys

The ILXTable.keys method returns the existing keys in a subtable in the session DB.

DescriptionProperty

Indicates that the method return a count of keys, not
the keys and values. Defaults to false.

options.count

Indicates that the timestamp of the key will not be
updated. Default value is false.

options.noTouch

Specifies the level of debug tracing for an operation.
Default value is 0.

options.traceLevel

The method returns a count of keys or an array of keys, a system error, or one of the following status values

• ILXTable.OK
• ILXTable.NOT_FOUND

ILXTable.keys( subtable, options )

ILXTransaction class

The ILXStream flow for the client and the server contains ILXTransaction objects. The ILXTransaction
objects provide properties and methods for the client and server traffic.

The ILXTransaction class provides the context for management of request and response transactions. The
association of ILX and HTTP profiles with a virtual server indicates that traffic management be performed
in the context of request and response transactions. A request transaction begins with the following event:

ILXFlow.client.on('requestStart', function(request) {...})

40

iRulesLX streaming data



A response transaction begins with the following event:

ILXFlow.server.on('responseStart', function(response) {...})

All request and response headers are available at the start of a transaction. The request or response must be
read using standard Node.js data or readable events on the ILXFlow.client or ILXFlow.server. For
comparison, the end of a transaction is indicated by the events

ILXFlow.client.on('requestComplete', function(request) {...})

ILXFlow.server.on('responseComplete', function(response) {...})

At the end of the transaction, the headers and body are available to the plug-in.

ILXTransaction.complete

The ILXTransaction.complete method forwards a request or response. If the ILXTransaction object is part
of a request, the method is called to forward a request to the server. If the ILXTransaction object is part of
a response, the method is called to forward a response to the client.

ILXTransaction.complete()

ILXTransaction.respond

The ILXTransaction.respond method called on a request object indicates that a plug-in will respond directly
to a client. The request will be discarded and not sent to the server. When the requestComplete event is
received, a plug-in may call ILXtransaction.setHeader to add the headers to the response. Likewise, a plug-in
may add a body to the response by calling ILXFlow.client.write. To send the response to the client, the
plug-in must call ILXTransaction.complete.

ILXTransaction.removeHeader

The ILXTransaction.removeHeader method prevents the named header from being returned to a client in
a response, or sent to a server in a request.

LIXTransaction.removeHeader(name)

ILXTransaction.setHeader

The ILXTransaction.setHeader method adds a header, or replaces an existing header of the same name;
available in either a response or a request object.

ILXTransaction.setHeader(name, value)

ILXTransaction.replaceBody

The ILXTransaction.replaceBody method discards the body data; available in either a response or a request
object. This method can be called after receipt of the requestStart or responseStart events and prior

41

BIG-IP® iRulesLX User Guide



to calling ILXTransaction.complete. The plug-in may replace the body by using the ILXFlow.client.write
or ILXFlow.server.write methods.

ILXTransaction.replaceBody()

The following tables list the properties for ILXTransaction request and response objects.

DescriptionProperty

Specifies the request URI.request.params.uri

Specifies the request method.request.params.method

Specifies the protocol version.request.params.version

Specifies the path portion of a URI.request.params.path

Specifies the query portion of a URI.request.params.query

Specifies the set of headers in a request.request.params.headers

DescriptionProperty

Specifies the response status value.response.params.status

Specifies the protocol version.response.params.version

Specifies the set of headers in a response.response.params.headers

Indicates whether the ILX framework will
automatically close the connection to the client when

response.params.closeClient

response.complete is called. Defaults to true. To
change the behavior, set this property to false before
calling response.complete.

Indicates whether the ILX framework will
automatically close the connection to the server when

response.params.closeServer

response.complete is called. Defaults to true. To
change the behavior, set this property to false before
calling response.complete.

42

iRulesLX streaming data



iRulesLX streaming data native server code example

This code sample implements an HTTP server using native Node.js modules.

var http = require('http');
var f5 = require('f5-nodejs');

function httpRequest(req, res)
{

res.end("got it: " + req.method + " " + req.url + "\n", "ascii");
}

var plugin = new f5.ILXPlugin();
plugin.startHttpServer(httpRequest);





iRulesLX streaming data pass-through HTTP server code
example

This code sample implements a pass-through HTTP server. A virtual server must have an HTTP profile to
handle the request start and response complete events that are common to HTTP requests.

var assert = require('assert');
var f5 = require('f5-nodejs');
var plugin = new f5.ILXPlugin();

function log(msg)
{

if (plugin.globalTraceLevel() >= 5) {
console.log(msg);

}
}

plugin.on("connect", function(flow)
{

flow.client.allow();
flow.client.on("requestStart", function(request) {

log("requestStart event");
log("method: " + request.params.method);
log("uri: " + request.params.uri);
log("query: " + request.params.query);
log("path: " + request.params.path);
log("version: " + request.params.version);
for (var hdr in request.params.headers) {

log(hdr + ": " + request.params.headers[hdr]);
}

});
flow.client.on("readable", function() {

log("client readable event");
var buf;
while(true){

buf = flow.client.read();
if (buf !== null) {

log("client body: " + buf.length + " bytes");
log(buf.toString());
flow.server.write(buf);

}
else {

log("client EOF");
break;

}
}

});
flow.client.on("requestComplete", function(request) {

log("request complete: " + request.params.uri);
log("request truncated: " + request.params.truncated);
request.complete();

});
flow.server.on("connect", function() {

log("server connect event");
});
flow.server.on("responseStart", function(response) {

log("responseStart event");
log("status: " + response.params.status);
log("version: " + response.params.version);
for (var hdr in response.params.headers) {

log(hdr + ": " + response.params.headers[hdr]);
}



});
flow.server.on("readable", function() {

log("server readable event");
var buf;
while (true) {

buf = flow.server.read();
if (buf !== null) {

log("server body: " + buf.length + " bytes");
log(buf.toString());
flow.client.write(buf);

}
else {

log("server EOF");
break;

}
}

});
flow.server.on("responseComplete", function(response) {

log("response done event: " + response.params.status);
log("response truncated: " + response.params.truncated);
response.complete();

});
});

var options = new f5.ILXPluginOptions();
options.handleClientOpen = true;
plugin.start(options);

46

iRulesLX streaming data pass-through HTTP server code example



iRulesLX streaming data read-write socket code example

This code sample uses the F5 Node.js module to read data from a server into a buffer, then writes the data
to a client. Data received from a client is written into a buffer and then written to a server.

var f5 = require("f5-node.js");
var plugin = new f5.ILXPlugin();

plugin.on("connect", function(flow)
{

flow.client.on("data", function(buffer) {
flow.server.write(buffer);

});
flow.client.on("error", function(err) {

console.log("client socket error: ", err);
});
flow.server.on("readable", function() {

var buffer;
while (true) {

buffer = flow.server.read();
if (buffer === null) {

break;
}
flow.client.write(buffer);

}
});
flow.server.on("error", function(err) {

console.log("server socket error: " + err);
});
flow.on("error", function(err) {

console.log("flow error: " + err);
});

});
var options = new f5.ILXPluginOptions();
plugin.start(options);





iRulesLX streaming data server code example

This code sample creates a server that responds to clients as an HTTP server. The structure of the code
makes it suitable to types of servers other than just HTTP.

var f5 = require('f5-nodejs');
var plugin = new f5.ILXPlugin();

plugin.on("connect", function(flow)
{

flow.client.on("data", function(buffer) {
flow.client.end(

"HTTP/1.0 200 OK\r\n" +
"Server: BigIP\r\n" +
"Connection: Keep-Alive\r\n" +
"Content-Length: " + 4 + "\r\n\r\n" +
"abc\n");

});
});
var options = new f5.ILXPluginOptions();
options.disableServer = true;
plugin.start(options);





Legal Notices

Legal notices

Publication Date

This document was published on Feb 13, 2017.

Publication Number

MAN-0591-01

Copyright

Copyright © 2017, F5 Networks, Inc. All rights reserved.

F5 Networks, Inc. (F5) believes the information it furnishes to be accurate and reliable. However, F5 assumes
no responsibility for the use of this information, nor any infringement of patents or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under any patent,
copyright, or other intellectual property right of F5 except as specifically described by applicable user
licenses. F5 reserves the right to change specifications at any time without notice.

Trademarks

For a current list of F5 trademarks and service marks, see
http://www.f5.com/about/guidelines-policies/trademarks/.

All other product and company names herein may be trademarks of their respective owners.

Patents

This product may be protected by one or more patents indicated at: https://f5.com/about-us/policies/patents

Export Regulation Notice

This product may include cryptographic software. Under the Export Administration Act, the United States
government may consider it a criminal offense to export this product from the United States.

RF Interference Warning

This is a Class A product. In a domestic environment this product may cause radio interference, in which
case the user may be required to take adequate measures.

FCC Compliance

This equipment has been tested and found to comply with the limits for a Class A digital device pursuant
to Part 15 of FCC rules. These limits are designed to provide reasonable protection against harmful
interference when the equipment is operated in a commercial environment. This unit generates, uses, and
can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual,
may cause harmful interference to radio communications. Operation of this equipment in a residential area
is likely to cause harmful interference, in which case the user, at his own expense, will be required to take
whatever measures may be required to correct the interference.

http://www.f5.com/about/guidelines-policies/trademarks/
https://f5.com/about-us/policies/patents


Anymodifications to this device, unless expressly approved by themanufacturer, can void the user's authority
to operate this equipment under part 15 of the FCC rules.

Canadian Regulatory Compliance

This Class A digital apparatus complies with Canadian ICES-003.

Standards Compliance

This product conforms to the IEC, European Union, ANSI/UL and Canadian CSA standards applicable to
Information Technology products at the time of manufacture.

52

Legal Notices



Index

C

creating
iRulesLX plug-in 20

E

extending iRules
about Node.js TCL 9

extensibility
iRulesLX Node.js 10

I

ILXBufferUtil 27
ILXDatagroup 29
ILXFlow 23
ILXLbOptions 33
ILXPlugin 21
ILXPluginOptions 23
ILXStream 25
ILXTable 34
ILXTransaction 40
iRulesLX development environment

creating 11
iRulesLX environment

about authoring 11
iRulesLX extension file

adding 18
iRulesLX extensions

adding 18
iRulesLX Node.js extensions

editing 17

iRulesLX plugin properties
viewing 19

iRulesLX rules
adding 18

iRulesLX streaming data example
for pass-through 45
for read-write socket 47
for server 49

iRulesLX streaming data example native server 43
iRulesLX tmsh environment

creating 13
republishing 15

iRulesLX workspace
deleting 17
exporting 17
importing 18
navigating 17

iRulesLX workspace editor previous version
reverting 19

N

Node.js
and iRulesLX 5
and iRulesLX background 7

S

streaming data iRulesLX 21

V

viewing
iRulesLX extension properties 19

53

Index



54

Index


	Table of Contents
	iRulesLX programmability
	Why Node.js?
	About Node.js development
	About packages and modules

	About tmsh and the iRulesLX environment
	About the iRulesLX development environment

	Working in the iRulesLX development environment
	Republishing in the iRulesLX environment
	About iRulesLX graphical editor
	Creating a new workspace
	Deleting a workspace
	Exporting a workspace
	Importing a workspace

	Adding a rule in the workspace editor
	Adding an extension in the workspace editor
	Adding a file to an extension in the workspace editor
	Reverting to a previous version in the workspace editor

	Viewing plug-in properties
	Viewing extension properties
	Creating an iRulesLX plug-in

	iRulesLX streaming data
	ILXPlugin class
	ILXPluginOptions class
	IXFlow class
	ILXStream class
	ILXBufferUtil class
	ILXDatagroup class
	ILXLbOptions class
	ILXTable class
	ILXTransaction class

	iRulesLX streaming data native server code example
	iRulesLX streaming data pass-through HTTP server code example
	iRulesLX streaming data read-write socket code example
	iRulesLX streaming data server code example
	Legal Notices
	Legal notices

	Index

