
Deploying F5 with Apache Web Servers

DEPLOYMENT GUIDE
Version 1.0

jordan
Typewritten Text
Important: This guide has been archived. While the content in this guide is still valid for the products and versions listed in the document, it is no longer being updated and may refer to F5 or third party products or versions that have reached end-of-life or end-of-support. For a list of current guides, see https://f5.com/solutions/deployment-guides.

Table of Contents

F5 Deployment Guide i

Table of Contents

Deploying the BIG-IP LTM with the Apache web server
Prerequisites and configuration notes ... 1
Product versions and revision history ... 1
Configuration example .. 2

Configuring Apache Web Server for high performance environments
Using a statically linked binary or a dynamically loaded module 3
Using a worker module or a pre-fork module .. 4
Using the Pre-Fork model .. 4
Using the Threaded (worker) model ... 8
Windows tuning .. 11

Configuring the ServerName and CanonicalName .. 12
Turning down KeepAlive and Failed Request timeouts ... 13

Configuring the BIG-IP LTM system
Creating the HTTP health monitor .. 15
Creating the pool .. 16
Creating profiles .. 18
Creating the virtual server ... 22

Appendix A: Configuring the BIG-IP LTM to offload SSL
Using SSL certificates and keys .. 25
Creating a Client SSL profile .. 26
Creating the Redirect iRule .. 26
Modifying the HTTP virtual server ... 27
Creating the HTTPS virtual server ... 28

Appendix B: Configuring the F5 WebAccelerator module with Apache web servers
Prerequisites and configuration notes ... 30
Configuration example .. 30
Configuring the WebAccelerator module .. 31
Creating an HTTP Class profile .. 31
Modifying the Virtual Server to use the Class profile .. 32
Creating a Policy ... 33
Creating an Application ... 34

Deploying the BIG-IP LTM with the Apache web
server

This deployment guide provides step by step procedures for configuring the
F5 devices with Apache web servers. It also contains information on how to
best configure the Apache devices for high performance environments.
For more information on the Apache web server or the Apache Software
Foundation, see http://httpd.apache.org/.
For more information on F5 devices described in this guide, see
http://www.f5.com/products/big-ip/.

To provide feedback on this deployment guide or other F5 solution
documents, contact us at solutionsfeedback@f5.com.

Prerequisites and configuration notes
The following are prerequisites and configuration notes about this
deployment:

◆ The Apache server must be on version 2.0 or later

◆ BIG-IP LTM v9.4.x or later (including v10.x)

◆ In this deployment guide, compression is configured on the F5 device
(either on the BIG-IP LTM or the WebAccelerator module). This reduces
the burden on the Apache servers, as you do not need to use a
compression module such as mod_gzip.

◆ Persistence is typically not needed in a static web server setup, however
we include optional procedures for configuring cookie persistence with
back-up IP persistence, which can be implemented if applicable to your
environment.

Product versions and revision history
Product and versions tested for this deployment guide:

Revision history:

Product Tested Version Tested

BIG-IP System (LTM and WebAccelerator) 9.4.7 (applicable to 9.4.x and later)

Apache Server 2.0.63

Document Version Description

1.0 New deployment guide
1

mailto:solutionsfeedback@f5.com
mailto:solutionsfeedback@f5.com

Deploying F5 with Apache Web Servers
Configuration example
In this deployment guide, the BIG-IP system is optimally configured to
optimize and direct traffic to Apache servers. Figure 1 shows a simple,
logical configuration example with a redundant pair of BIG-IP LTM devices
running the WebAccelerator module in front of a group of Apache servers.

Figure 1 Logical configuration example

Firewalls

Internet

BIG-IP Local Traffic Manager

Apache Servers

with WebAccelerator

Clients
F5® Deployment Guide 2

Configuring Apache Web Server for high
performance environments

This document covers the configuration and tuning of both the Apache
HTTP Web Server and the BIG-IP system. The purpose of this guide is to
help install an architecture that can deliver the highest performance, in the
most optimized manner (both at the network and application layer) and with
the least amount of bandwidth.
For sites that anticipate many hundreds or thousands of requests per second
to the Apache front-end servers, tuning and optimizing Apache (as well as
following the recommendations for the BIG-IP system in this deployment
guide), help deliver the fastest response times possible. For sites with fewer
requests per second, or no foreseeable performance issues, stock Apache
installations downloaded or compiled from source are most likely sufficient,
however the recommendations for BIG-IP still apply.
The following guidelines are intended to deliver optimum performance for
Apache and the BIG-IP LTM. The recommendations below are the most
critical optimizations for Apache. For detailed information on Apache
performance tuning, see:
http://httpd.apache.org/docs/2.0/misc/perf-tuning.html

Using a statically linked binary or a dynamically loaded module
The first decision in building an Apache environment is whether to compile
a statically linked Apache binary or a dynamic module loading Apache
binary. Dynamic module loading presents the convenience of adding and
removing modules as needed, but for sites that need maximum performance,
statically linked modules are a better choice.
One benefit of a statically built Apache server is that at compile time users
have to examine all modules needed. This insures the smallest memory
footprint for the Apache binary, and can also result in a more secure server
by limiting exposure to loaded modules. Once you build and run your
Apache binary, you will know exactly the memory footprint of each child or
worker (this is discussed in detail later in this guide).
If you are choosing a statically linked Apache binary, compile the Apache
binary by listing every module you need. For example, the compile line for
statically linked Apache Binary may look like the following:

./configure --prefix=/opt/http/apache --enable-module=rewrite --enable-module=proxy

If you are choosing a dynamically linked Apache binary, only load modules
that you think are necessary. Note that execution time is slightly longer with
dynamic loading, as the modules are executed the first time they are needed.
Specifying which modules need to be loaded is done in the http.conf instead
of at compile time, with a dynamically linked Apache binary.
To compile Apache for dynamic loading, the compile line may look like the
following:

./configure --prefix=/opt/http/apache --enable-so
3

Deploying F5 with Apache Web Servers
Using a worker module or a pre-fork module
The next decision to make before compiling is whether to use a worker
(threaded) Apache model or a pre-fork (children) model. This is a compile
time decision and can not be changed without re-compiling Apache.
There are inherent advantages to each model and it is up to each
administrator to weigh the pros-and-cons of this decision.
In the pre-fork model, there is one thread per process and each process
handles one request. The advantages of the pre-fork model are:
• The number of children is always a known quantity, making

troubleshooting easier.
• Each request is served by a unique process on the system, which adds to

security.
• The pre-fork model has been in use for more than 10 years, making it

very well-known and stable.

In the threaded model, each worker process has multiple threads that receive
requests. Keep in mind the following if using the threaded model:
• The worker system uses less memory, but can be more difficult to

troubleshoot and more difficult to configure for scalability.
• Because each process handles multiple requests, there may be some

security issues for the extremely security conscious.

During compile time, you choose either pre-fork or worker. We address
performance tuning options below for each option. Under Microsoft
Windows, Apache operates with one child process with many requests. On
Windows only mpm_winnt can be used.

Using the Pre-Fork model
In this section, we show tuning options for the Pre-Fork model. As a point of
reference, the following is an example of out-of-the box Apache pre-fork
tuning from the Apache http.conf file:
<IfModule prefork.c>

 ServerLimit 256

 StartServers 8

 MinSpareServers 5

 MaxSpareServers 20

 MaxClients 150

 MaxRequestsPerChild 1000

</IfModule>

In the following procedures, we analyze these settings, and provide
guidance for adjusting them for maximum performance.
F5® Deployment Guide 4

Setting the MaxClients and ServerLimit values
The most important setting for the Pre-Fork model is MaxClients, and
tuning should begin there. One of the benefits of running a statically linked
pre-fork model is that calculating MaxClients (and the corresponding
setting of ServerLimit) can be easy to calculate. No matter whether you are
running static or dynamic, calculating MaxClients is very similar.

To calculate and set the MaxClients and ServerLimit values

1. Start the Apache instance that you have compiled, using apachectl
start or your own start script.

2. Send a few requests to Apache from a web browser or a utility such
as Apache Bench (ab, compiled during Apache compilation or
downloadable in binary format). Make sure to exercise any optional
modules you are dynamically linking in order to account for their
memory usage as well.

3. Determine the memory size of each pre-fork process. You may use a
command such ps or the top application to gather this data. Be sure
to collect the resident memory size and not the virtual size, and
collect the data from the children, not the parent. The child
processes are identifiable by the fact that their resident memory size
should be identical and their parent process are all identical.

4. Figure out the available memory available on the box (using a tool
such as free or top) and then divide the size of the Apache process
by the available RAM. This number is a very good approximation of
how many children can service requests on a box.

For example, let’s say we have statically compiled a very small
Apache binary, with just the needed modules, and each process
takes up 8 megabytes. Our server has 8 gigabytes of RAM, of which
6 are available (after the OS and other running applications are
accounted for). Using our formula, we find that this box can safely
handle 768 children at a time (6,144Mb / 8Mb = 768). So we set
MaxClients to 768.

5. Next, we want to add a ServerLimit directive, and also set it to 768.
If it is not present, ServerLimit must be added to this section of the
http.conf file, and it must go before the MaxClients value (see the
final example at the end of this section).

With this example box, we know that we can service up to 768
simultaneous users (provided that there is enough CPU power). If
each request takes less than 2 seconds to complete, for example, we
can calculate this box being able to handle approximately 384
requests per second at its maximum. Note that 2 seconds is an
extremely conservative estimate of how long it should take an
Apache child to return a result. Calculating the actual response time
will vary from environment to environment and determining the
requests per second must be tested using tools such as Apache
Bench.
5

Deploying F5 with Apache Web Servers
Setting the StartServers value
The next task is to set the StartServers option. StartServers indicates how
many children will be started when Apache is first loaded. The pre-fork
model is designed to stop running children if there are no requests, in order
to conserve resources. However, the startup and shutdown of instances is
itself resource expensive. The recommendation here is to find a good middle
ground between the maximum number of requests the box will be expected
to handle, and the amount of resources available.
This guide also covers the BIG-IP LTM Slow Ramp Time feature which
can help individual servers from being flooded by requests the moment they
come back online. In short, the idea with StartServers is to pre-start enough
children to service requests immediately, without having to spin up a large
number of children as requests come in, but not too many children to
immediately overwhelm the box before the kernel has a chance to react to
all of the new processes.
For a box that runs a maximum of 768 clients, if the traffic pattern of the site
is one in which the site is usually busy, it would be a good idea to set
StartServers to a number such a 512, and then adjust the Slow Ramp Time
setting on the BIG-IP LTM to ramp up connections. In our example, we set
StartServers at 512. See Step 6 of Creating the pool, on page 16 for our
Slow Ramp Time setting.

Setting the MinSpareServers and MaxSpareServers value
For the minimum and maximum number of spare servers, we recommend
tuning based on the traffic patterns on the box. For boxes with unpredictable
levels of traffic throughout the day, it's a good idea to set MinSpareServers
and MaxSpareServers to a higher number, with the goal of maintaining a
consistent number of processes. The forking and execution of new children
consumes memory and CPU resources and reduces the ability to service
bursts of traffic effectively. In our example, we recommend the following
settings, but each installation should be examined and tuned based on the
most common traffic patterns:
MinSpareServers 50

MaxSpareServers 100

Setting MaxRequestsPerChild
Finally, setting a maximum number of requests per child is a good idea to
deal with any potential memory leaks. The more requests per second
received, the higher this setting can be set, with the goal of not recycling
children too often. For example, setting the MaxRequestsPerChild to
10,000 on a box where each child serves a request ever 2 seconds means that
a child will be recycled on average every 83 minutes. Tune this number
higher as the number of requests go up. MaxRequestsPerChild should also
be dictated by the administrator’s comfort with the stability of the
applications. Newer implementations should start by setting
F5® Deployment Guide 6

MaxRequestsPerChild at a lower value, but after the application has been
stable in production for a while and there is certainty that there are no
memory leaks, this number can be increased.

Reviewing the Pre-Fork tuning options
Using the preceding recommendations, the section of our http.conf file
would look like the following:
<IfModule prefork.c>

 ServerLimit 768

 StartServers 512

 MinSpareServers 50

 MaxSpareServers 100

 MaxClients 768

 MaxRequestsPerChild 10000

</IfModule>
7

Deploying F5 with Apache Web Servers
Using the Threaded (worker) model
In this section, we show tuning options for the Threaded (Worker) model.
As a point of reference, the following is an example of out-of-the box
Apache pre-fork tuning from the Apache http.conf file:
<IfModule worker.c>

 StartServers 2

 MaxClients 150

 MinSpareThreads 25

 MaxSpareThreads 75

 ThreadsPerChild 25

 MaxRequestsPerChild 0

</IfModule>

Setting the MaxClients and ServerLimit values
The most important setting for the Worker model is also MaxClients, and
tuning should begin there.

To calculate and set the MaxClients and ServerLimit values

1. Start the Apache instance that you have compiled, using apachectl
start or your own start script.

2. Send a few requests to Apache from a web browser or a utility such
as Apache Bench (ab, compiled during Apache compilation or
downloadable in binary format). Make sure to exercise any optional
modules you are dynamically linking in order to account for their
memory usage as well.

3. Next, determine the memory size of each worker process. You may
use a command such ps or the top application to gather this data. Be
sure to collect the resident memory size and not the virtual size.

4. Take the available memory available on the box (using a tool such
as free or top) and then divide the size of the apache process by the
available RAM. This number will be a very good approximation of
how many children can service requests on a box.

For example, let us say we have a default worker setup with 150
clients (each with 25 threads) and each process takes up 20
megabytes. Let us say we have a server with 8 gigabytes of RAM of
which 6 is available (after the OS and other running applications are
accounted for), using our formula, we find that this box can safely
handle about 307 workers at a time (6,144 / 20 = ~307 workers). We
set MaxClients to 307 and adjust ServerLimit to be 307.

With this example box, we know that we can service up to 7675
(307 workers * 25 threads) simultaneous requests (provided that
there is enough CPU power). If each request takes less than 2
seconds to complete, for example, we can calculate this box being
able to handle approximately 3,837 requests per second at its
F5® Deployment Guide 8

maximum. Note that 2 seconds is an extremely conservative
estimate of how long it should take an Apache child to return a
result. Calculating the actual response time will vary from
environment to environment and determining the requests per
second must be tested using tools such as Apache Bench.

We can see that the worker model presents quite a performance
benefit over the child model.

Setting the StartServers value
The next task is to set the StartServers option. StartServers indicates how
many children will be started when Apache is first loaded. The worker
model is designed to stop running children if there are no requests, in order
to conserve resources. However, the startup and shutdown of instances is
itself resource expensive. The recommendation here is to find a good
middle ground between the maximum number of requests the box will be
expected to handle, and the amount of resources available.
This guide also covers the BIG-IP LTM Slow Ramp Time feature which can
help individual servers from being flooded by requests the moment they
come back online. In short, the idea with StartServers is to pre-start enough
children to service requests immediately, without having to spin up a large
number of children as requests come in, but not too many children to
immediately overwhelm the box before the kernel has a chance to react to
all of the new processes.
For a box that runs a maximum of 307 clients, if the traffic pattern of the site
is one in which the site is usually busy, it would be a good idea to set
StartServers to a number such a 100, and then adjust the Slow Ramp Time
setting on the BIG-IP LTM to ramp up connections. In our example, we set
StartServers at 100. See Step 6 of Creating the pool, on page 16 for our
Slow Ramp Time setting.

Setting Min and Max SpareServers
For the minimum and maximum number of spare servers, we recommend
tuning based on the traffic patterns on the box. For boxes with unpredictable
levels of traffic throughout the day, it's a good idea to set MinSpareServers
and MaxSpareServers to a higher number, with the goal of maintaining a
consistent number of processes. The forking and execution of new children
consumes memory and CPU resources and reduces the ability to service
bursts of traffic effectively. In our example, we recommend the following
settings, but each installation should be examined and tuned based on the
most common traffic patterns:
MinSpareServers 25
MaxSpareServers 75
9

Deploying F5 with Apache Web Servers
Setting MaxRequestsPerChild
Finally, setting a maximum number of requests per child is a good idea to
deal with any potential memory leaks. The more requests per second
received, the higher this setting can be set, with the goal of not recycling
children too often. For example, setting the MaxRequestsPerChild to
10,000 on a box where each child serves a request ever 2 seconds means that
a child will be recycled on average every 83 minutes. Tune this number
higher as the number of requests go up. In our example, we are setting this
to 100,000 to recycle processes less frequently. MaxRequestsPerChild
should also be dictated by the administrator’s comfort with the stability of
the applications. Newer implementations should start by setting
MaxRequestsPerChild at a lower value, but after the application has been
stable in production for a while and there is certainty that there are no
memory leaks, this number can be increased.

After the analysis, in our hypothetical box we can recommend the following
settings:

<IfModule worker.c>

 ServerLimit 307

 StartServers 100

 MaxClients 307

 MinSpareThreads 25

 MaxSpareThreads 75

 ThreadsPerChild 25

 MaxRequestsPerChild 100000

</IfModule>
F5® Deployment Guide 10

Windows tuning
For Windows tuning, mpm_winnt is the only choice. The running processes
are one parent process and one child process with threads.
The following is the default Apache tuning:
<IfModule mpm_winnt.c>

 ThreadsPerChild 250

 MaxRequestsPerChild 0

</IfModule>

To properly tune Windows Apache, adjust the numbers of
ThreadsPerChild and monitor memory using task manager. Adjust the
threads per child according to the anticipated load and available memory.
After the analysis, in our hypothetical box we can recommend the following
settings:
<IfModule mpm_winnt.c>

 ThreadsPerChild 500

 MaxRequestsPerChild 10000

</IfModule>
11

Deploying F5 with Apache Web Servers
Configuring the ServerName and CanonicalName
No matter whether you are configuring a threaded or pre-fork model, the
next task is to find your ServerName directive and change it to match the
BIG-IP virtual server: <BIG-IPVirtualServerHostName:Port>. In our
example, we are using MyVirtualHostName and Port 80 is the external
listening port. The directive will look like this:
ServerName MyVirtualHostName:80

For CanonincalName, in some cases either CGIs, JavaScript or HTML
create situations where Apache must construct a URL (a redirect for
example). If you would like to trust the HostName value supplied by the
browser, leave CanonincalName to off, otherwise, if you would like to
control the environment more strictly, users should always be presented
with the external address (MyVirtualHostName), therefore, the setting
should be set to:
CanonicalName On

Designing your logs properly
Log formats in Apache's httpd.conf specify how logs should be formatted.
For BIG-IP LTM systems running SNAT or for many architectures with
tiered access, origin IP addresses of users may be lost. For this reason, we
recommend creating a custom log format and including the
X-Forwarded-For header. Later in this deployment guide we cover how to
enable this feature in BIG-IP LTM. To log the X-Forwarded-For header,
begin by editing httpd.conf and creating a combined log type that includes
at least the following X-Forwarded-For string:
 LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\"
\"%{User-Agent}i\" \"%{X-Forwarded-For}i\"" combined

We recommend copying and editing an existing LogFormat directive from
your Apache installation. The name for the LogFormat directive, in this case
combined, must be unique.
Be sure that the LogFormat directive appears on one line in your httpd.conf
and that there is no line break.
In this example, the LogFormat directive is setup to log all of the standard
information such as IP address, time, url, referrer and user-agent, but we
have appended the X-Forwarded-For header. We have called this the
combined format, however, you are free to name it whatever you like.
In the following section about log rotation, you see that we call combined in
the CustomLog directive. Without a CustomLog directive, modifying or
adding a LogFormat directive alone does not cause logging to begin.
F5® Deployment Guide 12

Rotating the logs
Log rotation and log size maintenance are critical to the ability of Apache
web server to perform at its peak ability. There are several strategies to log
rotation. We present several options here but it is up to each administrator to
design a solution that fits the needs of the specific installation.

◆ Piped logs
By outputting logs to a log rotation program, such as rotatelogs, log
rotation and manipulation is handed off to this program. For example,
configure your CustomLog directive by adding the following directive in
httpd.conf. Note that the CustomLog directive references the LogFormat
directive created earlier, in this case named combined:
CustomLog "|/path/to/rotateplogsprogram /path/to/logfilename
86400" combined

In this example, log output is sent to a program called rotatelogsprogram
in the /path/to directory. The main log is named logfilename and is located
in /path/to directory. The log file is rotated every 86,400 seconds (24 hours)
and it is in the combined format (defined elsewhere in httpd.conf and
explained below).

◆ Syslog output
Another option is to send logs to a syslog facility for collection and
storage. For Error logs, Apache has the built-in ability to send logs to a
configured syslog facility. For example, in httpd.conf you would
configure your Error Log as follows:
ErrorLog syslog:local

In this example all errors would be sent to a defined syslog facility called
local. To define syslog facility consult your system's man page.

For access logs, streaming output to syslog is identical to method one.
Instead of using a log rotation program however, you would send the
output to a script that would in turn send the information to syslog.

◆ A nightly log rotation program
This is a final option for systems where streaming or piped output will
not work for some reason. For this option to work, a nightly restart of
Apache is likely necessary. One recommendation is to create a cron
operation on your system to call a script that rotates the logs and restarts
Apache. BIG-LTM health monitors will detect if the Apache instance is
down longer than the monitor period and traffic will not be sent to an
instance that does not respond.

Turning down KeepAlive and Failed Request timeouts
While KeepAlives should be on, the KeepAlive timeout should be set down
to prevent idle connections from holding open children with no activity. We
recommend the following settings in httpd.conf:
Pre-fork model:
KeepAlive On
13

Deploying F5 with Apache Web Servers
KeepAliveTimeout 2

MaxKeepAliveRequests 100

Worker and mpm_winnt model:
KeepAlive On

KeepAliveTimeout 15

MaxKeepAliveRequests 100

For the Failed Request setting, we recommend turning down the connection
timeout:
Timeout 20

For some slower international connections there may be problems with the
Timeout set too low because Apache closes the connection from the server
side before the browser's requests reach the server after the TCP socket is
opened. Therefore, we recommend adjusting the Timeout value upwards if
this is identified as a potential problem in your traffic patterns.
F5® Deployment Guide 14

Configuring the BIG-IP LTM system
In this section, we configure the BIG-IP LTM system for Apache Web
Servers. This section also includes optional configuration for offloading
SSL on the BIG-IP LTM.

Creating the HTTP health monitor
The first step is to set up a health monitors for the Apache devices. This
procedure is optional, but very strongly recommended. In our example, we
create a basic HTTP health monitor. Although the monitor in the following
example is quite simple, you can configure optional settings such as Send
and Receive Strings to make the monitor much more specific.

To create a health monitor

1. On the Main tab, expand Local Traffic, and then click Monitors.

2. Click the Create button. The New Monitor screen opens.

3. In the Name box, type a name for the Monitor.
In our example, we type apache-http-monitor.

4. From the Type list, select http.

5. In the Configuration section, in the Interval and Timeout boxes,
type an Interval and Timeout. We recommend at least a (1:3) +1
ratio between the interval and the timeout (for example, the default
setting has an interval of 5 and an timeout of 16). In our example,
we use a Interval of 30 and a Timeout of 91 (see Figure 2).

6. In the Send String and Receive Rule sections, you can add a Send
String and Receive Rule specific to the device being checked.

7. Click the Finished button.
The new monitor is added to the Monitor list.
15

Deploying F5 with Apache Web Servers

Figure 2 Creating the HTTP Monitor

Creating the pool
The next step is to define a load balancing pool for the Apache servers. A
BIG-IP pool is a set of devices grouped together to receive traffic according
to a load balancing method. This pool uses the monitor you just created.
This pool contains the Slow Ramp Time setting discussed previously in this
guide (see Step 6).

To create the Apache pool

1. On the Main tab, expand Local Traffic, and then click Pools.
The Pool screen opens.

2. In the upper right portion of the screen, click the Create button.
The New Pool screen opens.

3. From the Configuration list, select Advanced.

4. In the Name box, type a name for your pool.
In our example, we use apache-http-pool.

5. In the Health Monitors section, select the name of the monitor you
created in Creating the HTTP health monitor, and click the Add
(<<) button. In our example, we select apache-http-monitor.

6. In the Slow Ramp Time box, type a number of seconds that
corresponds to the expected number of requests per second.
For example, if the server farm is receiving 2000 requests per
second, and there are 5 servers, each device receives approximately
400 requests per second (using the round robin load balancing
F5® Deployment Guide 16

method). When a server that has been offline comes back online,
we don't want the BIG-IP to immediately send 400 requests to that
device. In our example, we set the Slow Ramp Time to 30 seconds.

Note: The Slow Ramp Time option does not appear unless you have
selected Advanced from the Configuration list.

7. From the Load Balancing Method list, choose your preferred load
balancing method (different load balancing methods may yield
optimal results for a particular network).
In our example, we select Round Robin.

8. In this pool, we leave the Priority Group Activation Disabled.

9. In the New Members section, make sure the New Address option
button is selected.

10. In the Address box, add the first Apache server to the pool. In our
example, we type 10.132.81.100.

11. In the Service Port box, type 80 or select HTTP from the list.

12. Click the Add button to add the member to the list.

13. Repeat steps 8-10 for each server you want to add to the pool.
In our example, we repeat these steps five times for the remaining
servers, 10.132.81.101 - .105.

14. Click the Finished button (see Figure 3).
17

Deploying F5 with Apache Web Servers

Figure 3 Creating the pool for the Apache servers

Creating profiles
The BIG-IP system use configuration objects called profiles. A profile is an
object that contains user-configurable settings for controlling the behavior
of a particular type of network traffic, such as HTTP connections. Using
profiles enhances your control over managing network traffic, and makes
traffic-management tasks easier and more efficient.
Although it is possible to use the default profiles, we strongly recommend
you create new profiles based on the default parent profiles, even if you do
not change any of the settings initially. Creating new profiles allows you to
easily modify the profile settings specific to this deployment, and ensures
you do not accidentally overwrite the default profile.
F5® Deployment Guide 18

Creating an HTTP profile

The first new profile we create is an HTTP profile. The HTTP profile
contains numerous configuration options for how the BIG-IP LTM system
handles HTTP traffic. In the following example, we base our HTTP profile
off of the http-acceleration parent profile, as we are using the
WebAccelerator. If you are not using the WebAccelerator, we recommend
using the http-wan-optimized-compression-caching parent.

To create a new HTTP profile

1. On the Main tab, expand Local Traffic, and then click Profiles.
The HTTP Profiles screen opens.

2. In the upper right portion of the screen, click the Create button.
The New HTTP Profile screen opens.

3. In the Name box, type a name for this profile. In our example, we
type apache-http-opt.

4. From the Parent Profile list, select
http-wan-optimized-compression-caching.
If you are using the WebAccelerator module, select
http-acceleration.

5. Optional: If you using the BIG-IP LTM to offload SSL, in the
Settings section, check the Custom box for Redirect Rewrite, and
from the Redirect Rewrite list, select Match. See Appendix A:
Configuring the BIG-IP LTM to offload SSL, on page 1-25 for more
information.

6. Modify any of the other settings as applicable for your network. In
our example, we leave the settings at their default levels.

7. Click the Finished button.

Creating the TCP profiles
The next profiles we create are the TCP profiles. If most of the Microsoft
Apache users are accessing the devices via a Local Area Network, we
recommend using the tcp-lan-optimized (for server-side TCP connections)
parent profile. If the majority of the users are accessing the system from
remote or home offices, we recommend using an additional TCP profile,
called tcp-wan-optimized (for client side TCP connections). In our
example, we leave these profiles at their default levels; you can configure
any of the options as applicable for your network.

Creating the LAN optimized TCP profile
First we configure the LAN optimized profile. If you do not want to use this
optimized profile, you can choose the default TCP parent profile.
19

Deploying F5 with Apache Web Servers
To create a new TCP profile

1. On the Main tab, expand Local Traffic, and then click Profiles.
The HTTP Profiles screen opens.

2. On the Menu bar, from the Protocol menu, click tcp.

3. In the upper right portion of the screen, click the Create button.
The New TCP Profile screen opens.

4. In the Name box, type a name for this profile. In our example, we
type apache-tcp-lan.

5. From the Parent Profile list, select tcp-lan-optimized.

6. Modify any of the settings as applicable for your network. In our
example, we leave the settings at their default levels.

7. Click the Finished button.

Creating the WAN optimized TCP profile
Now we configure the WAN optimized profile. Remember, if most of the
users are accessing the system over the LAN or other low latency links, you
do not need to create this profile.

To create a new TCP WAN optimized profile

1. On the Main tab, expand Local Traffic, and then click Profiles.
The HTTP Profiles screen opens.

2. On the Menu bar, from the Protocol menu, click tcp.

3. In the upper right portion of the screen, click the Create button.
The New TCP Profile screen opens.

4. In the Name box, type a name for this profile. In our example, we
type apache-tcp-wan.

5. From the Parent Profile list, select tcp-wan-optimized.

6. Modify any of the settings as applicable for your network. In our
example, we leave the settings at their default levels.

7. Click the Finished button.

Optional: Creating persistence profile
As noted previously, Persistence is typically not needed in a static web
server setup, but cookie persistence with a back-up IP persistence can be
setup if your environment calls for it. In the following example, we show
how to create a cookie persistence profile.

To create a new cookie persistence profile

1. On the Main tab, expand Local Traffic, and then click Profiles.
The HTTP Profiles screen opens.
F5® Deployment Guide 20

2. On the Menu bar, click Persistence.
The Persistence Profiles screen opens.

3. In the upper right portion of the screen, click the Create button.
The New Persistence Profile screen opens.

4. In the Name box, type a name for this profile. In our example, we
type apache-cookie.

5. From the Persistence Type list, select Cookie.
The configuration options for cookie persistence appear.

6. Modify any of the settings as applicable for your network. In our
example, we leave the settings at their default levels.

7. Click the Finished button.

Figure 4 Creating the cookie persistence profile

If using persistence, it is a good idea to have a backup persistence method.
In this example, we use Source Address Affinity.

To create a Source Address Affinity persistence profile

1. On the Main tab, expand Local Traffic, and then click Profiles.
The HTTP Profiles screen opens.

2. On the Menu bar, click Persistence.
The Persistence Profiles screen opens.

3. In the upper right portion of the screen, click the Create button.
The New Persistence Profile screen opens.

4. In the Name box, type a name for this profile. In our example, we
type apache-source.

5. From the Persistence Type list, select Source Address Affinity.
The configuration options appear.
21

Deploying F5 with Apache Web Servers
6. Modify any of the settings as applicable for your network. In our
example, we leave the settings at their default levels.

1. Click the Finished button

Creating a OneConnect profile
The final profile we create is a OneConnect profile. With OneConnect
enabled, client requests can utilize existing, server-side connections, thus
reducing the number of server-side connections that a server must negotiate
to service those requests. This can provide significant performance
improvements for Apache implementations. For more information on
OneConnect, see the BIG-IP LTM documentation.
In our example, we leave all the options at their default settings. You can
configure these options as appropriate for your network.

To create a new OneConnect profile

1. On the Main tab, expand Local Traffic, and then click Profiles.
The HTTP Profiles screen opens.

2. On the Menu bar, from the Other menu, click OneConnect.
The Persistence Profiles screen opens.

3. In the upper right portion of the screen, click the Create button.
The New HTTP Profile screen opens.

4. In the Name box, type a name for this profile. In our example, we
type apache-oneconnect.

5. From the Parent Profile list, ensure that oneconnect is selected.

6. Modify any of the other settings as applicable for your network. In
our example, we leave the settings at their default levels.

7. Click the Finished button.

Creating the virtual server
Next, we configure a virtual server that references the profiles and pool you
created in the preceding procedures.

To create the virtual server

1. On the Main tab, expand Local Traffic, and then click Virtual
Servers.
The Virtual Servers screen opens.

2. In the upper right portion of the screen, click the Create button.
The New Virtual Server screen opens.

3. In the Name box, type a name for this virtual server. In our
example, we type apache-http-vs.

4. In the Destination section, select the Host option button.
F5® Deployment Guide 22

5. In the Address box, type the IP address of this virtual server. In our
example, we use 192.168.10.120.

6. In the Service Port box, type 80, or select HTTP from the list.

Figure 5 Creating the Apache virtual server

7. From the Configuration list, select Advanced.
The Advanced configuration options appear.

8. Leave the Type list at the default setting: Standard.

9. From the Protocol Profile (Client) list select the name of the
profile you created in the Creating the WAN optimized TCP profile
section. If you did not create a WAN optimized profile, select the
LAN optimized profile as in the following Step. In our example, we
select apache-tcp-wan.

10. From the Protocol Profile (Server) list, select the name of the
profile you created in the Creating the LAN optimized TCP profile
section. In our example, we select apache-tcp-lan.

11. From the OneConnect Profile list, select the name of the profile
you created in Creating a OneConnect profile. In our example, we
select apache-oneconnect.

12. From the HTTP Profile list, select the name of the profile you
created in the Creating an HTTP profile section. In our example, we
select apache-http-opt.

Figure 6 Selecting the Apache profiles for the virtual server
23

Deploying F5 with Apache Web Servers
13. In the Resources section, from the Default Pool list, select the pool
you created in the Creating the pool section. In our example, we
select apache-http-pool.

14. From the Default Persistence Profile list, select the persistence
profile you created in the Optional: Creating persistence profile
section. In our example, we select apache-cookie.

15. From the Fallback Persistence Profile list, select the fallback
persistence profile you created in the Optional: Creating persistence
profile section. In our example, we select apache-source.

Figure 7 Adding the Pool and persistence profiles to the virtual server

16. Click the Finished button.
The BIG-IP LTM HTTP configuration for Apache deployment is
now complete. If you are using the BIG-IP system to offload SSL,
continue with the following section.
F5® Deployment Guide 24

Appendix A: Configuring the BIG-IP LTM to offload
SSL

If you are using the BIG-IP LTM system to offload SSL from the Apache
devices, there are additional configuration procedures you must perform on
the BIG-IP LTM system. In the following configuration, the BIG-IP LTM
redirects all incoming traffic to the HTTP virtual server to the HTTPS
virtual server. This is useful if a user types a URL in a browser, but forgets
to change the protocol to HTTPS.
If your deployment does not require all traffic to be redirected to HTTPS,
you do not need to configure the iRule or modify the HTTP virtual server as
described below, nor configure the Rewrite Redirect setting in the HTTP
profile in Step 5 of Creating an HTTP profile. You can have both an HTTP
and HTTPS virtual server on the same address with the appropriate ports.

Important

This section is optional, and only necessary if you are using the BIG-IP
LTM system for offloading SSL.

Using SSL certificates and keys
Before you can enable the BIG-IP LTM system to act as an SSL proxy, you
must install a SSL certificate on the virtual server that you wish to use for
Apache connections on the BIG-IP LTM device. For this Deployment
Guide, we assume that you already have obtained an SSL certificate, but it is
not yet installed on the BIG-IP LTM system. For information on generating
certificates, or using the BIG-IP LTM to generate a request for a new
certificate and key from a certificate authority, see the Managing SSL
Traffic chapter in the Configuration Guide for Local Traffic Management.

Importing keys and certificates
Once you have obtained a certificate, you can import this certificate into the
BIG-IP LTM system using the Configuration utility. By importing a
certificate or archive into the Configuration utility, you ease the task of
managing that certificate or archive. You can use the Import SSL
Certificates and Keys screen only when the certificate you are importing is
in Privacy Enhanced Mail (PEM) format.

To import a key or certificate

1. On the Main tab, expand Local Traffic.

2. Click SSL Certificates. The list of existing certificates displays.

3. In the upper right corner of the screen, click Import.

4. From the Import Type list, select the type of import (Certificate or
Key).
25

Deploying F5 with Apache Web Servers
5. In the Certificate (or Key) Name box, type a unique name for the
certificate or key.

6. In the Certificate (or Key) Source box, choose to either upload the
file or paste the text.

7. Click Import.
If you imported the certificate, repeat this procedure for the key.

Creating a Client SSL profile
The next step in this configuration is to create a Client SSL profile. This
profile contains the SSL certificate and Key information for decrypting the
SSL traffic on behalf of the servers.

To create a new Client SSL profile

1. On the Main tab, expand Local Traffic, and then click Profiles.
The HTTP Profiles screen opens.

2. On the Menu bar, from the SSL menu, select Client.
The Client SSL Profiles screen opens.

3. In the upper right portion of the screen, click the Create button.
The New Client SSL Profile screen opens.

4. In the Name box, type a name for this profile. In our example, we
type apache-clientssl.

5. In the Configuration section, check the Certificate and Key
Custom boxes.

6. From the Certificate list, select the name of the Certificate you
imported in the Importing keys and certificates section.

7. From the Key list, select the key you imported in the Importing keys
and certificates section.

8. Click the Finished button.

Creating the Redirect iRule
The Redirect iRule takes incoming HTTP requests (non-secure) and
redirects them to the correct HTTPS (secure) virtual server, without user
interaction.

To create the Redirect iRule

1. On the Main tab, expand Local Traffic, and then click iRules.
The iRule screen opens.

2. In the upper right portion of the screen, click the Create button.
The New iRule screen opens.
F5® Deployment Guide 26

3. In the Name box, enter a name for your iRule.
In our example, we use apache-httptohttps.

4. In the Definition section, copy and paste the following iRule:
when HTTP_REQUEST {

 HTTP::redirect https://[HTTP::host][HTTP::uri]

}

5. Click the Finished button (see Figure 8).

Figure 8 Creating the iRule

Modifying the HTTP virtual server
The next task is to modify the HTTP virtual server you created in Creating
the virtual server, on page 1-22 to use the iRule you just created.

To modify the existing Apache virtual server

1. On the Main tab, expand Local Traffic, and then click Virtual
Servers. The Virtual Servers screen opens.

2. From the Virtual Server list, click the Apache virtual server you
created in the Creating the virtual server section.
In our example, we click apache-http-vs.

3. On the menu bar, click Resources.

4. From the Default Pool list, select None.
This virtual server no longer requires the load balancing pool, as
traffic is redirected to the HTTPS virtual server we create in the
following procedure.

5. Click the Update button.

6. In the iRules section, click the Manage button.
The Resource Management screen opens.

7. From the Available list, select the iRule you created in the Creating
the Redirect iRule section, and click the Add (<<) button.
In our example, we select apache-httptohttps.

8. Click the Finished button.
27

Deploying F5 with Apache Web Servers
Creating the HTTPS virtual server
The final task in this section is to create a HTTPS virtual server.

To create a new HTTPS virtual server

1. On the Main tab, expand Local Traffic, and then click Virtual
Servers. The Virtual Servers screen opens.

2. In the upper right portion of the screen, click the Create button.

3. In the Name box, type a name for this virtual server. In our
example, we type apache-https-vs.

4. In the Destination section, select the Host option button.

5. In the Address box, type the IP address of this virtual server. In our
example, we use 192.168.104.146.

6. In the Service Port box, type 443 or select HTTPS from the list.

7. From the Configuration list, select Advanced.

8. Leave the Type list at the default setting: Standard.

9. From the Protocol Profile (Client) list select the name of the
profile you created in the Creating the WAN optimized TCP profile
section. If you did not create a WAN optimized profile, select the
LAN optimized profile as in the following Step. In our example, we
select apache-tcp-wan.

10. From the Protocol Profile (Server) list, select the name of the
profile you created in the Creating the LAN optimized TCP profile
section. In our example, we select apache-tcp-lan.

11. From the OneConnect Profile list, select the name of the profile
you created in Creating a OneConnect profile. In our example, we
select apache-oneconnect.

12. From the HTTP Profile list, select the name of the profile you
created in the Creating an HTTP profile section. In our example, we
select apache-http-opt.
Make sure you have the Rewrite Redirect box checked in the HTTP
profile as described in Step 5 of Creating an HTTP profile.

13. From the SSL Profile (Client) list, select the name of the SSL
profile you created in the Creating a Client SSL profile section. In
our example, we select apache-clientssl.

14. From the Default Pool list, select the pool you created in the
Creating the pool section. In our example, we select
apache-http-pool.

15. From the Default Persistence Profile list, select the persistence
profile you created in the Optional: Creating persistence profile. In
our example, we select apache-cookie.
F5® Deployment Guide 28

16. From the Fallback Persistence Profile list, select the fallback
persistence profile you created in the Optional: Creating persistence
profile. In our example, we select apache-source.

17. Click the Finished button.

This completes the BIG-IP LTM configuration.
29

Deploying F5 with Apache Web Servers
Appendix B: Configuring the F5 WebAccelerator
module with Apache web servers

In this chapter, we configure the WebAccelerator module for the Apache
devices to increase performance for end users. The BIG-IP WebAccelerator
is an advanced web application delivery solution that provides a series of
intelligent technologies designed to overcome problems with browsers, web
application platforms and WAN latency issues which impact user
performance.

For more information on the F5 WebAccelerator, see
www.f5.com/products/big-ip/product-modules/webaccelerator.html.

Prerequisites and configuration notes
The following are prerequisites for this section:

◆ We assume that you have already configured the BIG-IP LTM system for
directing traffic to the Apache deployment as described in this
Deployment Guide.

◆ You must have purchased and licensed the WebAccelerator module on
the BIG-IP LTM system, version 9.4 or later.

◆ This document is written with the assumption that you are familiar with
the BIG-IP LTM system, WebAccelerator and Apache Web server.
Consult the appropriate documentation for detailed information.

Configuration example
Using the configuration in this section, the BIG-IP LTM system with
WebAccelerator module is optimally configured to accelerate traffic to
Apache devices. The BIG-IP LTM with WebAccelerator module both
increases end user performance as well as offloads the servers from serving
repetitive and duplicate content.

In this configuration, a remote client with WAN latency accesses an Apache
server via the WebAccelerator. The user’s request is accelerated on repeat
visits by the WebAccelerator instructing the browser to use the dynamic or
static object that is stored in its local cache. Additionally, dynamic and static
objects are cached at the WebAccelerator so that they can be served quickly
without requiring the server to re-serve the same objects.
F5® Deployment Guide 30

http://www.f5.com/products/big-ip/product-modules/webaccelerator.html

Configuring the WebAccelerator module
Configuring the WebAccelerator module requires creating an HTTP class
profile and creating an Application. The WebAccelerator device has a large
number of other features and options for fine tuning performance gains, see
the WebAccelerator Administrator Guide for more information.

Creating an HTTP Class profile
The first procedure is to create an HTTP class profile. When incoming
HTTP traffic matches the criteria you specify in the WebAccelerator class,
the system diverts the traffic through this class. In the following example,
we create a new HTTP class profile, based on the default profile.

To create a new HTTP class profile

1. On the Main tab, expand WebAccelerator, and then click Class
Profiles.
The HTTP Class Profiles screen opens.

2. In the upper right portion of the screen, click the Create button.
The New HTTP Class Profile screen opens.

3. In the Name box, type a name for this Class. In our example, we
type apache-class.

4. From the Parent Profile list, make sure httpclass is selected.

5. In the Configuration section, from the WebAccelerator row, make
sure Enabled is selected.

6. In the Hosts row, from the list select Match Only. The Host List
options appear.

a) In the Host box, type the host name that your end users use to
access the Apache devices. In our example, we type
apache-application.siterequest.com (see Figure 9).

b) Leave the Entry Type at Pattern String.

c) Click the Add button.

d) Repeat these sub-steps for any other host names users might use
to access the Apache deployment.

7. The rest of the settings are optional, configure them as applicable
for your deployment.

8. Click the Finished button. The new HTTP class is added to the list.
31

Deploying F5 with Apache Web Servers
Figure 9 Creating a new HTTP Class profile

Modifying the Virtual Server to use the Class profile
The next step is to modify the virtual server for your Apache deployment on
the BIG-IP LTM system to use the HTTP Class profile you just created.

To modify the Virtual Server to use the Class profile

1. On the Main tab, expand Local Traffic, and then click Virtual
Servers. The Virtual Servers screen opens.

2. From the Virtual Server list, click the name of the virtual server
you created for the Apache servers. Creating the virtual server, on
page 22In our example, we click apache-http-vs.
The General Properties screen for the Virtual Server opens.

3. On the Menu bar, click Resources.
The Resources screen for the Virtual Server opens.

4. In the HTTP Class Profiles section, click the Manage button.

5. From the Available list, select the name of the HTTP Class Profile
you created in the preceding procedure, and click the Add (<<)
button to move it to the Enabled box. In our example, we select
apache-class.
F5® Deployment Guide 32

6. Click the Finished button. The HTTP Class Profile is now
associated with the Virtual Server.r

Important

If you are using the BIG-IP LTM version 9.4.2 or later, you must have
created an HTTP profile on the BIG-IP LTM system that has RAM Cache
enabled. In our example (Creating an HTTP Class profile, on page 31) we
use a parent profile that includes RAM Cache. If you did not create an
HTTP profile with RAM Cache enabled, you must create a new HTTP
profile, based on a parent profile that uses RAM Cache (such as HTTP
Acceleration), and modify the virtual server to use this new profile. This is
only required for BIG-IP LTM version 9.4.2 and later.

To create the HTTP profile, use Creating an HTTP Class profile, on page
31, selecting the HTTP Acceleration parent profile. You must leave RAM
Cache enabled; all other settings are optional. To modify the virtual server,
follow Steps 1 and 2 from the preceding procedure to access the virtual
server, and then from the HTTP Profile list, select the name of the new
profile you just created and click Update.

Creating a Policy
The next task is to create a new WebAccelerator policy for the Apache
deployment. In our example, we base the policy off of the Layer 2 Delivery
policy. If you are an advanced user, you can also create a brand new policy
from scratch.

To create a new Policy

1. On the Main tab, expand WebAccelerator, and then click Policies.
The WebAccelerator UI opens in a new window.

2. In the Pre-defined Acceleration Policies table, from the Layer 2
Delivery row, click Copy. The Copy Policy screen opens.

3. In the Name box, type a name for this policy. In our example, we
type Apache-Policy. You can optionally type a description.

4. Click the Copy button.
The new policy appears in the User-defined Accelerator Policies
list.

5. Locate the new policy in the User-defined Accelerator Policies list,
and click the Publish link.
The box expands with a warning and a comment box. You can
optionally type a comment (see Figure 10).

6. Click the Publish Now button.
33

Deploying F5 with Apache Web Servers
Figure 10 Creating the Apache policy in WebAccelerator

Creating an Application
The next procedure is to create a WebAccelerator Application. The
Application provides key information to the WebAccelerator so that it can
handle requests to your application appropriately.

To create a new Application

1. On the Main tab, expand WebAccelerator, and then click
Applications. The WebAccelerator UI opens in a new window.

2. Click the Create button.

3. In the Application Name box, type a name for your application.
In our example, we type Apache-WA.

4. In the Description box, you can optionally type a description for
this application.

5. From the Central Policy list, select the name of the policy you
created in the preceding procedure. In our example, we select
Apache-Policy (see Figure 11).

6. In the Requested Host box, type the host name that your end users
use to access the Apache deployment. This should be the same host
name you used in Step 6a of Creating an HTTP Class profile, on
page 1-31. In our example, we type
apache-application.siterequest.com.
If you have additional host names, click the Add Host button and
enter the host name(s).

7. Click the Save button.
F5® Deployment Guide 34

Figure 11 Configuring an Application on the WebAccelerator

The rest of the configuration options on the WebAccelerator are optional,
configure these as applicable for your network. With this base configuration,
your end users will notice an marked improvement in performance after
their first visit.
35

	Table of Contents
	Deploying F5 with Apache Web Servers
	Deploying the BIG-IP LTM with the Apache web server
	Prerequisites and configuration notes
	Product versions and revision history
	Configuration example

	Configuring Apache Web Server for high performance environments
	Using a statically linked binary or a dynamically loaded module
	Using a worker module or a pre-fork module
	Using the Pre-Fork model
	Using the Threaded (worker) model
	Windows tuning

	Configuring the ServerName and CanonicalName
	Turning down KeepAlive and Failed Request timeouts

	Configuring the BIG-IP LTM system
	Creating the HTTP health monitor
	Creating the pool
	Creating profiles
	Creating the virtual server

	Appendix A: Configuring the BIG-IP LTM to offload SSL
	Using SSL certificates and keys
	Creating a Client SSL profile
	Creating the Redirect iRule
	Modifying the HTTP virtual server
	Creating the HTTPS virtual server

	Appendix B: Configuring the F5 WebAccelerator module with Apache web servers
	Prerequisites and configuration notes
	Configuration example
	Configuring the WebAccelerator module
	Creating an HTTP Class profile
	Modifying the Virtual Server to use the Class profile
	Creating a Policy
	Creating an Application

